Skip to main content

Advertisement

Log in

Research on Separation and Extraction of Valuable Metals from Complex Non-ferrous Metals Resources by High Pressure Oxygen Leaching Methodology: A Review

  • Review Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

To systematically discuss how to realize the high efficiency utilization of the complex non-ferrous metals resources with the high pressure oxygen leaching method, the present article reviews the current research progress of the technology performed in the separation and extraction of valuable metals from low-grade polymetallic complex ores, unmanageable intermediate products, byproducts and solid wastes. By expanding the research frontiers in this field, the reaction mechanism and remarkable achievements of the technology in the separation and extraction of valuable metals from different types of complex non-ferrous materials are analyzed and discussed, and the research trend of the technology is prospected. The results showed that the research fields of the high pressure oxygen leaching method in the complex nonferrous metal resources mainly include four major aspects: the enrichment and pretreatment of low-grade polymetallic complex minerals, the efficient and selective separation and extraction of valuable components and the directional control the mineral phase of leaching residue obtained, and the comprehensive recovery of unmanageable intermediate products and byproducts, as well as the recycling and harmless clean utilization of solid waste. It is inevitably concluded that the high pressure oxygen leaching method can not only realize the efficient and selective extraction of valuable components in complex non-ferrous metal resources and configurate directionally the harmfulness phase structure of leaching residue obtained, but also achieve breakthrough in the domains of comprehensive resource recovery from solid wastes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Phuong TNT, Tsuji S, Jeon S et al (2020) Redox potential-dependent chalcopyrite leaching in acidic ferric chloride solutions: Leaching experiments. Hydrometallurgy 194:105299

    Article  Google Scholar 

  2. Petrovic SJ, Bogdanovic GD, Antonijevic MM (2018) Leaching of chalcopyrite with hydrogen peroxide in hydrochloric acid solution. Trans Nonferrous Met Soc China 28(7):1444–1455

    Article  CAS  Google Scholar 

  3. Hidalgo T, Kuhar L, Beinlich A et al (2018) Kinetic study of chalcopyrite dissolution with iron(III) chloride in methanesulfonic acid. Miner Eng 125(1):66–74

    Article  CAS  Google Scholar 

  4. Zeng WM, Qiu GZ, Zhou HB et al (2011) Electrochemical behaviour of massive chalcopyrite electrodes bioleached by moderately thermophilic microorganisms at 48 °C. Hydrometallurgy 105(3–4):259–263

    Article  CAS  Google Scholar 

  5. Zeng WM, Tan SE, Chen MA et al (2011) Detection and analysis of attached microorganisms on the mineral surface during bioleaching of pure chalcopyrite with moderate thermophiles. Hydrometallurgy 106(1–2):46–50

    Article  CAS  Google Scholar 

  6. Yu RL, Tan JX, Gu GH et al (2010) Mechanism of bioleaching chalcopyrite by Acidithiobacillus ferrooxidans in agar-simulated extracellular polymeric substances media. J Cent South Univ Technol 17(1):56–61

    Article  CAS  Google Scholar 

  7. Chaidez J, Parga J, Valenzuela J, Carrillo R, Almaguer I (2019) Leaching chalcopyrite concentrate with oxygen and sulfuric acid using a low-pressure reactor. Metals 9(2):189

    Article  CAS  Google Scholar 

  8. Turan MD, Altundogan HS (2013) Leaching of chalcopyrite concentrate with hydrogen peroxide and sulfuric acid in an autoclave system. Metall Mater Trans B 44(4):809–819

    Article  CAS  Google Scholar 

  9. Wang SJ (2006) Copper leaching from chalcopyrite concentrates. JOM 57(7):48–51

    Article  Google Scholar 

  10. Gan Y, Wu JC, Li G (2016) Alkaline sulfur-oxygen pressure leaching test of low-grade gold-bearing sulphur concentrate. Non-ferrous metals: Smelting part 09:31–34. https://doi.org/10.3969/j.issn.1007-7545.2016.09.009

    Article  Google Scholar 

  11. Chen J, Huang K, Chen YR (2004) Pressure cyanide hydrometallurgical process for treatment of Pt-Pd sulfide flotation concentrates. The Chinese Journal of Nonferrous Metals 14(01):41–47. https://doi.org/10.3321/j.issn:1004-0609.2004.z1.007

    Article  Google Scholar 

  12. Deng ZG, Bai JY, Wei C et al (2018) Pressure leaching behavior of nickel from Ni–Mo ore in aqueous oxygenated media. Int J Chem Reactor Eng. https://doi.org/10.1515/ijcre-2017-0209

    Article  Google Scholar 

  13. Huang FR, Liao YL, Zhou J et al (2015) Selective recovery of valuable metals from nickel converter slag at elevated temperature with sulfuric acid solution. Sep Purif Technol 156:572–581. https://doi.org/10.1016/j.seppur.2015.10.051

    Article  CAS  Google Scholar 

  14. Li CX, Wei C, Deng ZG et al (2018) Hydrothermal hematite precipitation and conversion behavior of metastable iron phase in FeSO4–H2O system. Chin J Nonferrous Met 28:628–636. https://doi.org/10.19476/j.ysxb.1004.0609.2018.03.23

    Article  Google Scholar 

  15. Yang XW, Qu DF (2011) Hydrometallurgy. Metallurgical Press, Beijing

    Google Scholar 

  16. Zhang L, Guo XY, Tian QH et al (2022) Extraction of gold from typical Carlin gold concentrate by pressure oxidation pretreatment - Sodium jarosite decomposition and polysulfide leaching. Hydrometallurgy 208:105743. https://doi.org/10.1016/j.hydromet.2021.105743

    Article  CAS  Google Scholar 

  17. McDonald RG, Muir DM (2007) Pressure oxidation leaching of chalcopyrite. Part I. Comparison of high and low temperature reaction kinetics and products. Hydrometallurgy 86(3–4):191–205. https://doi.org/10.1016/j.hydromet.2006.11.015

    Article  CAS  Google Scholar 

  18. Xu XY, Xiong M, Cai CK et al (2018) Research progress of pretreatment technology of refractory gold ores containing arsenic, stibium and sulfur. Gold 39(8):68–72. https://doi.org/10.11792/hj20180814

    Article  Google Scholar 

  19. Zhang WX, Yan JS, Zhang JW (2019) Technological test on abroad arsenic bearing refractory gold mine. Non-ferrous Met Metall 04:56–59. https://doi.org/10.3969/j.issn.1007-7545.2019.04.013

    Article  Google Scholar 

  20. Asamoah RK, Skinner W, Addai-Mensah J (2018) Alkaline cyanide leaching of refractory gold flotation concentrates and bio-oxidised products: The effect of process variables. Hydrometallurgy 179:79–93. https://doi.org/10.1016/j.hydromet.2018.05.010

    Article  CAS  Google Scholar 

  21. Yang YB, Gao W, Xu B et al (2019) Study on oxygen pressure thiosulfate leaching of gold without the catalysis of copper and ammonia. Hydrometallurgy 187:71–80. https://doi.org/10.1016/j.hydromet.2019.05.006

    Article  CAS  Google Scholar 

  22. Xu B, Li K, Zhong Q et al (2018) Study on the oxygen pressure alkaline leaching of gold with generated thiosulfate from sulfur oxidation. Hydrometallurgy 177:178–186. https://doi.org/10.1016/j.hydromet.2018.03.006

    Article  CAS  Google Scholar 

  23. Rao S, Liu ZQ, Qiu XY (2019) Oxygen pressure leaching–flotation joint process for Jinbaoshan platinum group minerals. Trans Nonferrous Met Soc China 29:1090–1098. https://doi.org/10.1016/S1003-6326(19)65017-X

    Article  CAS  Google Scholar 

  24. Tao Y, Zhu D, Gao ZM et al (2007) An Addition study on the Pd-occurrence states in the JinBaoShan Pt–Pd deposit. Acta Mineral Sin 27:262–264. https://doi.org/10.16461/j.cnki.1000-4734.2007.z1.037

    Article  CAS  Google Scholar 

  25. Song HB, He MQ, Zhang SZ et al (2008) Chemical composition of the ore and occurrence state of the elements in Jingbaoshan platinum-palladium deposit. Chin J Geochem 27:104–108. https://doi.org/10.1007/s11631-008-0104-4

    Article  CAS  Google Scholar 

  26. Chen CY, Wen SM, Cheng FQ et al (2013) Comprehensive utilization status of low grade and refractory platinum- palladium ores from Jinbaoshan of Yunnan. Conserv Util Miner Resour 01:50–54. https://doi.org/10.13779/j.cnki.issn1001-0076.2013.01.013

    Article  Google Scholar 

  27. Chen J, Huang K (2006) A new technique for extraction of platinum group metals by pressure cyanidation. Hydrometallurgy 82:164–171. https://doi.org/10.1016/j.hydromet.2006.03.041

    Article  CAS  Google Scholar 

  28. Ozberk E, Jankola WA, Vecchiarelli M et al (1995) Commercial operations of the Sherritt zinc pressure leach process. Hydrometallurgy 39:49–52. https://doi.org/10.1016/0304-386X(95)00047-K

    Article  CAS  Google Scholar 

  29. Cao XY, Lv GX, Zhu YS (2004) The characteristics of regional distribution of the major metal minerals resources in China. Resour Ind 6(4):22–24. https://doi.org/10.13776/j.cnki.resourcesindustries.2004.04.006

    Article  Google Scholar 

  30. Gao L, Xiao KY, Cong Y et al (2016) Metallogenic characteristics and mineral resource potential of the southwestern Shanjiang Zn-Pb-Cu-Ag-Sb-Au metallogenic belt. Acta Geol Sin 90(7):1650–1667

    Google Scholar 

  31. Xie HY, Liu YH, Rao B et al (2021) Selective passivation behavior of galena surface by sulfuric acid and a novel flotation separation method for copper-lead sulfide ore without collector and inhibitor. Sep Purif Technol 267:118621. https://doi.org/10.1016/j.seppur.2021.118621

    Article  CAS  Google Scholar 

  32. Xu B, Wu JT, Dong ZL et al (2020) Flotation performance, structure–activity relationship and adsorption mechanism of a newly-synthesized collector for copper sulfide minerals in Gacun polymetallic ore. Appl Surf Sci 551:149420. https://doi.org/10.1016/j.apsusc.2021.149420

    Article  CAS  Google Scholar 

  33. Conić VT, Rajčić Vujasinović MM, Trujić VK et al (2014) Copper, zinc, and iron bioleaching from polymetallic sulphide concentrate. Trans Nonferrous Met Soc China 24:3688–3695. https://doi.org/10.1016/S1003-6326(14)63516-0

    Article  CAS  Google Scholar 

  34. He HW, Hu YH, Huang KL (2001) Progress in chemical leaching technology for zinc sulphide ores. Mining and metallurgical engineering 21(3):1–5

    CAS  Google Scholar 

  35. Xie KQ, Yang XW, Wang JK et al (2007) Kinetic study on pressure leaching of high iron sphalerite concentrate. Trans Nonferrous Met Soc China 17(1):187–194. https://doi.org/10.1016/S1003-6326(07)60070-3

    Article  CAS  Google Scholar 

  36. Ruiz MC, Zapata J, Padilla R (2008) Effect of variables on the quality of hematite precipitated from sulfate solutions. Hydrometallurgy 89(1–2):32–39. https://doi.org/10.1016/j.hydromet.2007.05.003

    Article  CAS  Google Scholar 

  37. Deng ZG, Yang F, Wei C et al (2020) Transformation behavior of ferrous sulfate during hematite precipitation for iron removal. Trans Nonferrous Met Soc China 30:492–500. https://doi.org/10.1016/S1003-6326(20)65229-3

    Article  CAS  Google Scholar 

  38. Yu LF, Zhu BP, Chen G (2018) Physicochemical analysis of iron removal by hemetite process in zinc hydrometallurgical production. Nonferrous Met (Extr Metall) (9): 19–22, 31. https://doi.org/10.3969/j.issn.1007-7545.2018.09.005

  39. Xu HS, Wei C, Li CX et al (2012) Leaching of a complex sulfidic, silicate-containing zinc ore in sulfuric acid solution under oxygen pressure. Sep Purif Technol 85:206–212. https://doi.org/10.1016/j.seppur.2011.10.012

    Article  CAS  Google Scholar 

  40. Wang MS, Wei C, Fan G et al (2015) Selective extraction of Mo from a Ni–Mo ore using pressure alkaline leaching. Hydrometallurgy 153:6–11. https://doi.org/10.1016/j.hydromet.2015.01.008

    Article  CAS  Google Scholar 

  41. Mai ZH (2006) Experimental study on pressure acid leaching of high silicon low grade zinc oxide ore. Kunming University of Science and Technology, Kunming

    Google Scholar 

  42. Li CX, Wei C, Fan G et al (2009) Pressure acid leaching of high silicon zinc oxide ore. Chin J Nonferrous Met 19:1678–1683. https://doi.org/10.19476/j.ysxb.1004.0609.2009.09.023

    Article  CAS  Google Scholar 

  43. He SM, Wang JK, Yan JF (2011) Pressure leaching of synthetic zinc silicate in sulfuric acid medium. Hydrometallurgy 108(3–4):171–176. https://doi.org/10.1016/j.hydromet.2011.04.004

    Article  CAS  Google Scholar 

  44. Wang YZ, Li CX, Wei C et al (2017) Production of hematite and conversion of adsorption S in zinc hydrometallurgy process. Chin J Nonferrous Met 27:2145–2153. https://doi.org/10.19476/j.ysxb.1004.0609.2017.10.23

    Article  Google Scholar 

  45. Shen XM, Ge J, Wang P et al (2018) Polymerization behavior of silicic acid with Fe3+, Al3+, and Ca2+ coexisting ions. J Sol-Gel Sci Technol 85(2):480–485. https://doi.org/10.1007/s10971-017-4558-x

    Article  CAS  Google Scholar 

  46. Liu F, Liu Z, Li Y et al (2017) Recovery and separation of gallium(III) and germanium(IV) from zinc refinery residues: Part I: Leaching and iron(III) removal. Hydrometallurgy 169:564–570. https://doi.org/10.1016/j.hydromet.2017.03.006

    Article  CAS  Google Scholar 

  47. Liu F, Liu Z, Li Y et al (2016) Extraction of gallium and germanium from zinc refinery residues by pressure acid leaching. Hydrometallurgy 164:313–320. https://doi.org/10.1016/j.hydromet.2016.06.006

    Article  CAS  Google Scholar 

  48. Liu F, Liu Z, Li Y et al (2016) Sulfuric leaching process of zinc powder replacement residue containing gallium and germanium. Chin J Nonferrous Met 26:908–918. https://doi.org/10.19476/j.ysxb.1004.0609.2016.04.024

    Article  Google Scholar 

  49. Liu F, Liu Z, Li Y et al (2014) Leaching mechanism of zinc powder replacement residue containing gallium and germanium by high pressure acid leaching. Chin J Nonferrous Met 24(4):1091–1098. https://doi.org/10.19476/j.ysxb.1004.0609.2014.04.034

    Article  CAS  Google Scholar 

  50. Hui XC, He S (2016) Characteristics of process mineralogy of U-Nb-Pb polymetallic ore in Huayangchuan Shaanxi Province. Met Mine 45:85–90

    Google Scholar 

  51. Li H, Wang HB, Wang YF et al (2019) Study on pressure oxidation process of low grade molybdenum concentrate. Nonferrous Met (Extr Metall) 8:48–51. https://doi.org/10.3969/j.issn.1007-7545.2019.08.009

    Article  Google Scholar 

  52. Liu HW, Huang Y, Huang XM et al (2019) Selective leaching of uranium from betafite by oxygen pressure leaching. Nonferrous Met (Extr Metall) 1:8–52. https://doi.org/10.3969/j.issn.1007-7545.2019.01.011

    Article  Google Scholar 

  53. Li H, Wang HB, Wang YF (2013) Study on hydrometallurgical process for complex molybdenum concentrate. Nonferrous Met (Extr Metall) 07:31–34. https://doi.org/10.3969/j.issn.1007-7545.2013.07.008

    Article  CAS  Google Scholar 

  54. Chen J (2017) Progress in separation of arsenic and antimony from high-arsenic-antimony dust. Mater Rev 31:406–409

    Google Scholar 

  55. Li Y, Liu Z, Li Q et al (2016) Alkaline oxidative pressure leaching of arsenic and antimony bearing dusts. Hydrometallurgy 166:41–47. https://doi.org/10.1016/j.hydromet.2016.07.010

    Article  CAS  Google Scholar 

  56. Zhang X, Su RC (2018) Experimental study on cadmium leaching with high impurity soot oxygen pressure acid. Metall Mater 38(6):26–27, 29

  57. Yuan ZW, Luo T, Liu XW et al (2019) Tracing anthropogenic cadmium emissions: from sources to pollution. Sci Tot Environ 676:87–96. https://doi.org/10.1016/j.scitotenv.2019.04.250

    Article  CAS  Google Scholar 

  58. Chen YH, Liu SX, Dong GG et al (2019) Study on oxygen pressure leaching process of acid sludge from copper smelting. China Nonferrous Metall. https://doi.org/10.19612/j.cnki.cn11-5066/tf.2019.05.004

    Article  Google Scholar 

  59. Yang HY, Li XJ, Tong LL et al (2014) Process mineralogy of high lead copper anode slime. Chin J Nonferrous Met 24:269–278. https://doi.org/10.19476/j.ysxb.1004.0609.2014.01.034

    Article  CAS  Google Scholar 

  60. Cai CK, Zhuang RC, Li HH (2015) Leaching of valuable metals from copper anode slime by oxygen pressure-acid leaching process. Hydrometall China 34:376–379. https://doi.org/10.13355/j.cnki.sfyj.2015.05.007

    Article  CAS  Google Scholar 

  61. Liu WF, Yang TZ, Zhang DC et al (2014) Pretreatment of copper anode slime with alkaline pressure oxidative leaching. Int J Miner Process 128:48–54. https://doi.org/10.1016/j.minpro.2014.03.002

    Article  CAS  Google Scholar 

  62. Han JW, Liang C, Liu W et al (2016) Pretreatment of tin anode slime using alkaline pressure oxidative leaching. Sep Purif Technol 174:389–395. https://doi.org/10.1016/j.seppur.2016.10.056

    Article  CAS  Google Scholar 

  63. Li K, Xu RG, He SW et al (2015) Arsenic and antimony removal from bismuth-rich lead anode slime by alkaline pressure oxidation leaching. Chin J Nonferrous Met 25(8):1394–1402. https://doi.org/10.19476/j.ysxb.1004.0609.2015.05.036

    Article  CAS  Google Scholar 

  64. Li JY, Wang T, Sun ZH et al (2018) Treatment of high arsenic content lead copper matte by a pressure oxidative leaching combined with cyclone and vertical electro-deposition method. Sep Purif Technol 199:282–288. https://doi.org/10.1016/j.seppur.2018.01.040

    Article  CAS  Google Scholar 

  65. Jin BJ, Yang XW, Shen QF (2009) Kinetics of copper dissolution during pressure oxidative leaching of lead-containing copper matte. Hydrometallurgy 99(1–2):119–123. https://doi.org/10.1016/j.hydromet.2009.07.004

    Article  CAS  Google Scholar 

  66. Jiang CJ, Xie ZF, Jiang ZH et al (2018) Technique for selective extraction of copper from lead matte. Mining Metall Eng 38(2):99–102. https://doi.org/10.3969/j.issn.0253-6099.2018.02.024

    Article  Google Scholar 

  67. Rivera RM, Xakalashe B, Ounoughene G et al (2019) Selective rare earth element extraction using high-pressure acid leaching of slags arising from the smelting of bauxite residue. Hydrometallurgy 184:162–174. https://doi.org/10.1016/j.hydromet.2019.01.005

    Article  CAS  Google Scholar 

  68. Zhao HL, Zhang GQ, Lv GZ et al (2014) Study on the pressure leaching of vanadium slag from converter without roasting titanium dioxide waste. J Northeastern Univ 35:1288–1291

    CAS  Google Scholar 

  69. Li XP, Liu DC, Wang J (2018) Experimental and kinetic study on oxygen pressure acid leaching of indium from low-content indium-containing leaching residue. J Cent South Univ (Sci Technol) 49(8):1869–1877. https://doi.org/10.11817/j.issn.1672-7207.2018.08.005

    Article  Google Scholar 

  70. Zhang Y, Zhang TA, Dreisinger D et al (2019) Recovery of vanadium from calcification roasted-acid leaching tailing by enhanced acid leaching. J Hazard Mater 369:632–641. https://doi.org/10.1016/j.jhazmat.2019.02.081

    Article  CAS  Google Scholar 

  71. Baghalha M, Papangelakis VG, Curlook W (2007) Factors affecting the leachability of Ni/Co/Cu slags at high temperature. Hydrometallurgy 85:42–52. https://doi.org/10.1016/j.hydromet.2006.07.007

    Article  CAS  Google Scholar 

  72. Li YJ, Perederiy I, Papangelakis VG (2008) Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching. J Hazard Mater 152:607–615. https://doi.org/10.1016/j.jhazmat.2007.07.052

    Article  CAS  Google Scholar 

  73. Perederiy I, Papangelakis VG, Buarzaiga M et al (2011) Co-treatment of converter slag and pyrrhotite tailings via high pressure oxidative leaching. J Hazard Mater 194:399–406. https://doi.org/10.1016/j.jhazmat.2011.08.012

    Article  CAS  Google Scholar 

  74. Zhang QJ, Wu YF, Yuan HR (2020) Recycling strategies of spent V2O5-WO3/TiO2 catalyst: a review. Resour Conserv Recycl 161:104983. https://doi.org/10.1016/j.resconrec.2020.104983

    Article  Google Scholar 

  75. Wei X, Liu CW, Cao HB et al (2019) Understanding the features of PGMs in spent ternary automobile catalysts for development of cleaner recovery technology. J Clean Prod 239:118031. https://doi.org/10.1016/j.jclepro.2019.118031

    Article  CAS  Google Scholar 

  76. Niu YH, Cheng GW, Yun F et al (2019) Progress in recovery of platinum group metals from failed automobile exhaust catalysts. Appl Chem Ind 48:964–969, 974. https://doi.org/10.16581/j.cnki.issn1671-3206.20190125.029

  77. Fan XX, Yang JZ, Yang N et al (2019) Experimental research on the pressure oxygen leaching rhenium of waste platinum-rhenium catalyst with low acid. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/218/1/012066

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere appreciation to the National Natural Science Foundation of China for the financial support (Project No. 21978122 and 21566017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalong Liao.

Additional information

The contributing editor for this article was Grace Ofori-Sarpong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, J., Ji, G., Liao, Y. et al. Research on Separation and Extraction of Valuable Metals from Complex Non-ferrous Metals Resources by High Pressure Oxygen Leaching Methodology: A Review. J. Sustain. Metall. 8, 51–63 (2022). https://doi.org/10.1007/s40831-022-00502-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00502-2

Keywords

Navigation