Skip to main content

The Evaluation of Sphalerite Surface Formed During Oxidative Leaching in Acidic Ferric Sulfate Media

Abstract

The main problem associated with the oxidative leaching process of sphalerite is the slow dissolution rate in acidic ferric solution due to the formation of a passive layer on the sphalerite surface. This research examined the surface structure of the sphalerite concentrate, non-oxidized and oxidized in ferric sulfate solution using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and high-resolution scanning electron microscopy (HRSEM). The oxidative leaching of sphalerite with D80 of 21 μm was conducted in an acidic ferric sulfate solution with ferric concentration of 1.2 M, temperature of 80 °C, sulfuric acid concentration of 0.5 M, and leaching time of 6 h. XRD analysis showed that elemental sulfur was the main by-product of the oxidation process. The results of the HRSEM and EDS map confirmed the formation of elemental sulfur layers on the oxidized sphalerite surface. Both Raman spectroscopy and XPS analysis detected sulfur and polysulfide layers on the leached sphalerite surface. The XPS study, together with Raman spectroscopy showed that the iron-free layer formed on the oxidized sphalerite surface could be another reason for the slow kinetics of the sphalerite leaching in the oxidative leaching condition.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Karimi S, Rashchi F, Moghaddam J (2017) Parameters optimization and kinetics of direct atmospheric leaching of Angouran sphalerite. Int J Miner Process 162:58–68. https://doi.org/10.1016/j.minpro.2017.03.004

    CAS  Article  Google Scholar 

  2. Lampinen M, Laari A, Turunen I (2015) Kinetic model for direct leaching of zinc sulfide concentrates at high slurry and solute concentration. Hydrometallurgy 153:160–169. https://doi.org/10.1016/j.hydromet.2015.02.012

    CAS  Article  Google Scholar 

  3. Santos SMC, Machado RM, Correia MJN, Reis MTA, Ismael MRC, Carvalho JMR (2010) Ferric sulphate/chloride leaching of zinc and minor elements from a sphalerite concentrate. Miner Eng 23:606–615. https://doi.org/10.1016/j.mineng.2010.02.005

    CAS  Article  Google Scholar 

  4. Souza AD, Pina PS, Leão VA, Silva CA, Siqueira PF (2007) The leaching kinetics of a zinc sulphide concentrate in acid ferric sulphate. Hydrometallurgy 89:72–81. https://doi.org/10.1016/j.hydromet.2007.05.008

    CAS  Article  Google Scholar 

  5. Karimi S, Ghahreman A, Rashchi F, Moghaddam J (2017) The mechanism of electrochemical dissolution of sphalerite in sulfuric acid media. Electrochim Acta 253:47–58. https://doi.org/10.1016/j.electacta.2017.09.040

    CAS  Article  Google Scholar 

  6. Karimi S, Ghahreman A, Rashchi F (2018) Kinetics of Fe(III)-Fe(II) redox half-reactions on sphalerite surface. Electrochim Acta 281:624–637. https://doi.org/10.1016/j.electacta.2018.05.132

    CAS  Article  Google Scholar 

  7. Nikkhou F, Xia F, Deditius AP (2019) Variable surface passivation during direct leaching of sphalerite by ferric sulfate, ferric chloride, and ferric nitrate in a citrate medium. Hydrometallurgy 188:201–215. https://doi.org/10.1016/j.hydromet.2019.06.017

    CAS  Article  Google Scholar 

  8. Munoz PB, Miller JD, Wadsworth ME (1979) Reaction mechanism for the acid ferric sulfate leaching of chalcopyrite. Metall Trans B 10:149–158. https://doi.org/10.1007/bf02652458

    Article  Google Scholar 

  9. Weisener CG, Smart RSC, Gerson AR (2004) A comparison of the kinetics and mechanism of acid leaching of sphalerite containing low and high concentrations of iron. Int J Miner Process 74:239–249. https://doi.org/10.1016/j.minpro.2003.12.001

    CAS  Article  Google Scholar 

  10. Meng X, Zhao H, Sun M, Zhang Y, Zhang Y, Lv X, Kim H, Vainshtein M, Wang S, Qiu G (2019) The role of cupric ions in the oxidative dissolution process of marmatite: A dependence on Cu2+ concentration. Sci Total Environ 675:213–223. https://doi.org/10.1016/j.scitotenv.2019.04.227

    CAS  Article  Google Scholar 

  11. Buckley AN, Wouterlood HJ, Woods R (1989) The surface composition of natural sphalerites under oxidative leaching conditions. Hydrometallurgy 22:39–56. https://doi.org/10.1016/0304-386X(89)90040-6

    CAS  Article  Google Scholar 

  12. Smart RSC, Jasieniak M, Prince KE, Skinner WM (2000) SIMS studies of oxidation mechanisms and polysulfide formation in reacted sulfide surfaces. Miner Eng 13:857–870. https://doi.org/10.1016/S0892-6875(00)00074-1

    CAS  Article  Google Scholar 

  13. Mycroft JR, Bancroft GM, McIntyre NS, Lorimer JW, Hill IR (1990) Detection of sulphur and polysulphides on electrochemically oxidized pyrite surfaces by X-ray photoelectron spectroscopy and Raman spectroscopy. J Electroanal Chem Interfacial Electrochem 292:139–152. https://doi.org/10.1016/0022-0728(90)87332-E

    CAS  Article  Google Scholar 

  14. Buckley AN, Woods R, Wouterlood HJ (1989) An XPS investigation of the surface of natural sphalerites under flotation-related conditions. Int J Miner Process 26:29–49. https://doi.org/10.1016/0301-7516(89)90041-0

    CAS  Article  Google Scholar 

  15. Peng P, Xie H, Lu L (2005) Coupling leaching of sphalerite concentrate. Miner Eng 18:553–555. https://doi.org/10.1016/j.mineng.2004.08.012

    CAS  Article  Google Scholar 

  16. Zhang Y, Zhao H, Zhang Y, Liu H, Yin H, Deng J, Qiu G (2020) Interaction mechanism between marmatite and chalcocite in acidic (microbial) environments. Hydrometallurgy 191:105217. https://doi.org/10.1016/j.hydromet.2019.105217

    CAS  Article  Google Scholar 

  17. Xiong X, Gu G, Ban J, Li S (2015) Bioleaching and electrochemical property of marmatite by Sulfobacillus thermosulfidooxidans. Trans Nonferrous Met Soc China 25:3103–3110. https://doi.org/10.1016/S1003-6326(15)63939-5

    CAS  Article  Google Scholar 

  18. Ghahremaninezhad A, Dixon DG, Asselin E (2013) Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution. Electrochim Acta 87:97–112. https://doi.org/10.1016/j.electacta.2012.07.119

    CAS  Article  Google Scholar 

  19. Viramontes-Gamboa G, Rivera-Vasquez BF, Dixon DG (2007) The active-passive behavior of chalcopyrite comparative study between electrochemical and leaching responses. J Electrochem Soc 154:C299

    CAS  Article  Google Scholar 

  20. Tian L, Yu XQ, Gong A, Wu XG, Zhang TA, Liu Y, Xu ZF (2020) Kinetic models of zinc dissolution from artificial sphalerite with different iron contents in oxygen pressure leaching. Can Metall Q 59:343–359. https://doi.org/10.1080/00084433.2020.1771038

    CAS  Article  Google Scholar 

  21. Perez IP, Dutrizac JE (1991) The effect of the iron content of sphalerite on its rate of dissolution in ferric sulphate and ferric chloride media. Hydrometallurgy 26:211–232. https://doi.org/10.1016/0304-386X(91)90032-H

    Article  Google Scholar 

  22. Jordan G, Pokrovsky OS, Bahlo J, Guichet X, Schlueter C (2011) Sphalerite dissolution kinetics at low hydrothermal conditions. Chem Geol 286:272–279. https://doi.org/10.1016/j.chemgeo.2011.05.014

    CAS  Article  Google Scholar 

  23. Nazari G, Asselin E (2009) Morphology of chalcopyrite leaching in acidic ferric sulfate media. Hydrometallurgy 96:183–188. https://doi.org/10.1016/j.hydromet.2008.09.004

    CAS  Article  Google Scholar 

  24. Córdoba EM, Muñoz JA, Blázquez ML, González F, Ballester A (2008) Leaching of chalcopyrite with ferric ion Part I: General aspects. Hydrometallurgy 93:81–87. https://doi.org/10.1016/j.hydromet.2008.04.015

    CAS  Article  Google Scholar 

  25. Buzatu A, Buzgar N, Damian G, Vasilache V, Apopei AI (2013) The determination of the Fe content in natural sphalerites by means of Raman spectroscopy. Vib Spectrosc 68:220–224. https://doi.org/10.1016/j.vibspec.2013.08.007

    CAS  Article  Google Scholar 

  26. Osadchii EG, Gorbaty YE (2010) Raman spectra and unit cell parameters of sphalerite solid solutions (FexZn1-xS). Geochim Cosmochim Acta 74:568–573. https://doi.org/10.1016/j.gca.2009.10.022

    CAS  Article  Google Scholar 

  27. Kharbish S (2007) A Raman spectroscopic investigation of Fe-rich sphalerite: effect of Fe-substitution. Phys Chem Miner 34:551–558. https://doi.org/10.1007/s00269-007-0170-x

    CAS  Article  Google Scholar 

  28. Hope GA, Woods R, Munce CG (2001) Raman microprobe mineral identification. Miner Eng 14:1565–1577. https://doi.org/10.1016/S0892-6875(01)00175-3

    CAS  Article  Google Scholar 

  29. Lepetit P, Bente K, Doering T, Luckhaus S (2003) Crystal chemistry of Fe-containing sphalerites. Phys Chem Miner 30:185–191

    CAS  Article  Google Scholar 

  30. Jiménez-Sandoval S, López-Rivera A, Irwin JC (2003) Influence of reduced mass differences on the Raman spectra of ternary mixed compounds: Zn1−xFexS and Zn1−xMnxS. Phys Rev B 68:054303. https://doi.org/10.1103/PhysRevB.68.054303

    CAS  Article  Google Scholar 

  31. Smith GD, Firth S, Clark RJH, Cardona M (2002) First- and second-order Raman spectra of galena (PbS). J Appl Phys 92:4375–4380. https://doi.org/10.1063/1.1505670

    CAS  Article  Google Scholar 

  32. Parker G, Woods R, Hope G (2003) Raman investigation of sulfide leaching. In: Proc. TMS Fall Extr. Process. Conf., pp. 447–460

  33. Eghbalnia MS (2012) Electrochemical and Raman investigation of pyrite and chalcopyrite oxidation, University of British Columbia, Doi: https://doi.org/10.14288/1.0072701.

  34. Mikhlin Y, Karacharov A, Tomashevich Y, Shchukarev A (2016) Cryogenic XPS study of fast-frozen sulfide minerals: Flotation-related adsorption of n-butyl xanthate and beyond. J Electron Spectros Relat Phenomena 206:65–73. https://doi.org/10.1016/j.elspec.2015.12.003

    CAS  Article  Google Scholar 

  35. Tang C, Zhu J, Zhou Q, Wei J, Zhu R, He H (2014) Surface Heterogeneity of SiO2 polymorphs: an XPS Investigation of α-quartz and α-cristobalite. J Phys Chem C 118:26249–26257. https://doi.org/10.1021/jp509338x

    CAS  Article  Google Scholar 

  36. Liu J, Ejtemaei M, Nguyen AV, Wen S, Zeng Y (2020) Surface chemistry of Pb-activated sphalerite. Miner Eng 145:106058. https://doi.org/10.1016/j.mineng.2019.106058

    CAS  Article  Google Scholar 

  37. He G, Qu W, Zhang L, Srinivasakannan C, Liu C, Liu B, Yang K, Peng J, Wang S (2020) Effects of sodium peroxide additives on dielectric properties and microwave roasting mechanism of zinc sulfide concentrate. JOM 72:1920–1926. https://doi.org/10.1007/s11837-020-04050-6

    CAS  Article  Google Scholar 

  38. Deen KM, Asselin E (2018) A hybrid mineral battery: energy storage and dissolution behavior of CuFeS2 in a fixed bed flow cell. Chemsuschem 11:1533–1548. https://doi.org/10.1002/cssc.201800157

    CAS  Article  Google Scholar 

  39. Goh SW, Buckley AN, Lamb RN (2006) Copper(II) sulfide? Miner Eng 19:204–208. https://doi.org/10.1016/j.mineng.2005.09.003

    CAS  Article  Google Scholar 

  40. Deng M, Karpuzov D, Liu Q, Xu Z (2013) Cryo-XPS study of xanthate adsorption on pyrite. Surf Interface Anal 45:805–810. https://doi.org/10.1002/sia.5165

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This project was supported by Hamedan University of Technology, Grant No. D.18.98.1991. The authors would like to thank the RIG fund from Queen’s University for partial support of the project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saeid Karimi or Fereshteh Rashchi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was Grace Ofori-Sarpong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karimi, S., Rashchi, F. & Ghahreman, A. The Evaluation of Sphalerite Surface Formed During Oxidative Leaching in Acidic Ferric Sulfate Media. J. Sustain. Metall. 7, 1304–1313 (2021). https://doi.org/10.1007/s40831-021-00418-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00418-3

Keywords

  • Sphalerite
  • Surface analysis
  • XPS
  • Oxidative leaching
  • Ferric ions