Karimi S, Rashchi F, Moghaddam J (2017) Parameters optimization and kinetics of direct atmospheric leaching of Angouran sphalerite. Int J Miner Process 162:58–68. https://doi.org/10.1016/j.minpro.2017.03.004
CAS
Article
Google Scholar
Lampinen M, Laari A, Turunen I (2015) Kinetic model for direct leaching of zinc sulfide concentrates at high slurry and solute concentration. Hydrometallurgy 153:160–169. https://doi.org/10.1016/j.hydromet.2015.02.012
CAS
Article
Google Scholar
Santos SMC, Machado RM, Correia MJN, Reis MTA, Ismael MRC, Carvalho JMR (2010) Ferric sulphate/chloride leaching of zinc and minor elements from a sphalerite concentrate. Miner Eng 23:606–615. https://doi.org/10.1016/j.mineng.2010.02.005
CAS
Article
Google Scholar
Souza AD, Pina PS, Leão VA, Silva CA, Siqueira PF (2007) The leaching kinetics of a zinc sulphide concentrate in acid ferric sulphate. Hydrometallurgy 89:72–81. https://doi.org/10.1016/j.hydromet.2007.05.008
CAS
Article
Google Scholar
Karimi S, Ghahreman A, Rashchi F, Moghaddam J (2017) The mechanism of electrochemical dissolution of sphalerite in sulfuric acid media. Electrochim Acta 253:47–58. https://doi.org/10.1016/j.electacta.2017.09.040
CAS
Article
Google Scholar
Karimi S, Ghahreman A, Rashchi F (2018) Kinetics of Fe(III)-Fe(II) redox half-reactions on sphalerite surface. Electrochim Acta 281:624–637. https://doi.org/10.1016/j.electacta.2018.05.132
CAS
Article
Google Scholar
Nikkhou F, Xia F, Deditius AP (2019) Variable surface passivation during direct leaching of sphalerite by ferric sulfate, ferric chloride, and ferric nitrate in a citrate medium. Hydrometallurgy 188:201–215. https://doi.org/10.1016/j.hydromet.2019.06.017
CAS
Article
Google Scholar
Munoz PB, Miller JD, Wadsworth ME (1979) Reaction mechanism for the acid ferric sulfate leaching of chalcopyrite. Metall Trans B 10:149–158. https://doi.org/10.1007/bf02652458
Article
Google Scholar
Weisener CG, Smart RSC, Gerson AR (2004) A comparison of the kinetics and mechanism of acid leaching of sphalerite containing low and high concentrations of iron. Int J Miner Process 74:239–249. https://doi.org/10.1016/j.minpro.2003.12.001
CAS
Article
Google Scholar
Meng X, Zhao H, Sun M, Zhang Y, Zhang Y, Lv X, Kim H, Vainshtein M, Wang S, Qiu G (2019) The role of cupric ions in the oxidative dissolution process of marmatite: A dependence on Cu2+ concentration. Sci Total Environ 675:213–223. https://doi.org/10.1016/j.scitotenv.2019.04.227
CAS
Article
Google Scholar
Buckley AN, Wouterlood HJ, Woods R (1989) The surface composition of natural sphalerites under oxidative leaching conditions. Hydrometallurgy 22:39–56. https://doi.org/10.1016/0304-386X(89)90040-6
CAS
Article
Google Scholar
Smart RSC, Jasieniak M, Prince KE, Skinner WM (2000) SIMS studies of oxidation mechanisms and polysulfide formation in reacted sulfide surfaces. Miner Eng 13:857–870. https://doi.org/10.1016/S0892-6875(00)00074-1
CAS
Article
Google Scholar
Mycroft JR, Bancroft GM, McIntyre NS, Lorimer JW, Hill IR (1990) Detection of sulphur and polysulphides on electrochemically oxidized pyrite surfaces by X-ray photoelectron spectroscopy and Raman spectroscopy. J Electroanal Chem Interfacial Electrochem 292:139–152. https://doi.org/10.1016/0022-0728(90)87332-E
CAS
Article
Google Scholar
Buckley AN, Woods R, Wouterlood HJ (1989) An XPS investigation of the surface of natural sphalerites under flotation-related conditions. Int J Miner Process 26:29–49. https://doi.org/10.1016/0301-7516(89)90041-0
CAS
Article
Google Scholar
Peng P, Xie H, Lu L (2005) Coupling leaching of sphalerite concentrate. Miner Eng 18:553–555. https://doi.org/10.1016/j.mineng.2004.08.012
CAS
Article
Google Scholar
Zhang Y, Zhao H, Zhang Y, Liu H, Yin H, Deng J, Qiu G (2020) Interaction mechanism between marmatite and chalcocite in acidic (microbial) environments. Hydrometallurgy 191:105217. https://doi.org/10.1016/j.hydromet.2019.105217
CAS
Article
Google Scholar
Xiong X, Gu G, Ban J, Li S (2015) Bioleaching and electrochemical property of marmatite by Sulfobacillus thermosulfidooxidans. Trans Nonferrous Met Soc China 25:3103–3110. https://doi.org/10.1016/S1003-6326(15)63939-5
CAS
Article
Google Scholar
Ghahremaninezhad A, Dixon DG, Asselin E (2013) Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution. Electrochim Acta 87:97–112. https://doi.org/10.1016/j.electacta.2012.07.119
CAS
Article
Google Scholar
Viramontes-Gamboa G, Rivera-Vasquez BF, Dixon DG (2007) The active-passive behavior of chalcopyrite comparative study between electrochemical and leaching responses. J Electrochem Soc 154:C299
CAS
Article
Google Scholar
Tian L, Yu XQ, Gong A, Wu XG, Zhang TA, Liu Y, Xu ZF (2020) Kinetic models of zinc dissolution from artificial sphalerite with different iron contents in oxygen pressure leaching. Can Metall Q 59:343–359. https://doi.org/10.1080/00084433.2020.1771038
CAS
Article
Google Scholar
Perez IP, Dutrizac JE (1991) The effect of the iron content of sphalerite on its rate of dissolution in ferric sulphate and ferric chloride media. Hydrometallurgy 26:211–232. https://doi.org/10.1016/0304-386X(91)90032-H
Article
Google Scholar
Jordan G, Pokrovsky OS, Bahlo J, Guichet X, Schlueter C (2011) Sphalerite dissolution kinetics at low hydrothermal conditions. Chem Geol 286:272–279. https://doi.org/10.1016/j.chemgeo.2011.05.014
CAS
Article
Google Scholar
Nazari G, Asselin E (2009) Morphology of chalcopyrite leaching in acidic ferric sulfate media. Hydrometallurgy 96:183–188. https://doi.org/10.1016/j.hydromet.2008.09.004
CAS
Article
Google Scholar
Córdoba EM, Muñoz JA, Blázquez ML, González F, Ballester A (2008) Leaching of chalcopyrite with ferric ion Part I: General aspects. Hydrometallurgy 93:81–87. https://doi.org/10.1016/j.hydromet.2008.04.015
CAS
Article
Google Scholar
Buzatu A, Buzgar N, Damian G, Vasilache V, Apopei AI (2013) The determination of the Fe content in natural sphalerites by means of Raman spectroscopy. Vib Spectrosc 68:220–224. https://doi.org/10.1016/j.vibspec.2013.08.007
CAS
Article
Google Scholar
Osadchii EG, Gorbaty YE (2010) Raman spectra and unit cell parameters of sphalerite solid solutions (FexZn1-xS). Geochim Cosmochim Acta 74:568–573. https://doi.org/10.1016/j.gca.2009.10.022
CAS
Article
Google Scholar
Kharbish S (2007) A Raman spectroscopic investigation of Fe-rich sphalerite: effect of Fe-substitution. Phys Chem Miner 34:551–558. https://doi.org/10.1007/s00269-007-0170-x
CAS
Article
Google Scholar
Hope GA, Woods R, Munce CG (2001) Raman microprobe mineral identification. Miner Eng 14:1565–1577. https://doi.org/10.1016/S0892-6875(01)00175-3
CAS
Article
Google Scholar
Lepetit P, Bente K, Doering T, Luckhaus S (2003) Crystal chemistry of Fe-containing sphalerites. Phys Chem Miner 30:185–191
CAS
Article
Google Scholar
Jiménez-Sandoval S, López-Rivera A, Irwin JC (2003) Influence of reduced mass differences on the Raman spectra of ternary mixed compounds: Zn1−xFexS and Zn1−xMnxS. Phys Rev B 68:054303. https://doi.org/10.1103/PhysRevB.68.054303
CAS
Article
Google Scholar
Smith GD, Firth S, Clark RJH, Cardona M (2002) First- and second-order Raman spectra of galena (PbS). J Appl Phys 92:4375–4380. https://doi.org/10.1063/1.1505670
CAS
Article
Google Scholar
Parker G, Woods R, Hope G (2003) Raman investigation of sulfide leaching. In: Proc. TMS Fall Extr. Process. Conf., pp. 447–460
Eghbalnia MS (2012) Electrochemical and Raman investigation of pyrite and chalcopyrite oxidation, University of British Columbia, Doi: https://doi.org/10.14288/1.0072701.
Mikhlin Y, Karacharov A, Tomashevich Y, Shchukarev A (2016) Cryogenic XPS study of fast-frozen sulfide minerals: Flotation-related adsorption of n-butyl xanthate and beyond. J Electron Spectros Relat Phenomena 206:65–73. https://doi.org/10.1016/j.elspec.2015.12.003
CAS
Article
Google Scholar
Tang C, Zhu J, Zhou Q, Wei J, Zhu R, He H (2014) Surface Heterogeneity of SiO2 polymorphs: an XPS Investigation of α-quartz and α-cristobalite. J Phys Chem C 118:26249–26257. https://doi.org/10.1021/jp509338x
CAS
Article
Google Scholar
Liu J, Ejtemaei M, Nguyen AV, Wen S, Zeng Y (2020) Surface chemistry of Pb-activated sphalerite. Miner Eng 145:106058. https://doi.org/10.1016/j.mineng.2019.106058
CAS
Article
Google Scholar
He G, Qu W, Zhang L, Srinivasakannan C, Liu C, Liu B, Yang K, Peng J, Wang S (2020) Effects of sodium peroxide additives on dielectric properties and microwave roasting mechanism of zinc sulfide concentrate. JOM 72:1920–1926. https://doi.org/10.1007/s11837-020-04050-6
CAS
Article
Google Scholar
Deen KM, Asselin E (2018) A hybrid mineral battery: energy storage and dissolution behavior of CuFeS2 in a fixed bed flow cell. Chemsuschem 11:1533–1548. https://doi.org/10.1002/cssc.201800157
CAS
Article
Google Scholar
Goh SW, Buckley AN, Lamb RN (2006) Copper(II) sulfide? Miner Eng 19:204–208. https://doi.org/10.1016/j.mineng.2005.09.003
CAS
Article
Google Scholar
Deng M, Karpuzov D, Liu Q, Xu Z (2013) Cryo-XPS study of xanthate adsorption on pyrite. Surf Interface Anal 45:805–810. https://doi.org/10.1002/sia.5165
CAS
Article
Google Scholar