Skip to main content
Log in

Surface Modification of Galena Concentrate, Sphalerite Concentrate, and Silica by the Bacterium Citrobacter sp. and Its Application to Green Flotation of Complex Pb–Zn Ores

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

In the present work, a biosurfactant-producing and sulfur-oxidizing mixotrophic bacterium (identified as Citrobacter sp.) was studied as flotation reagents to substitute for several hazardous chemical reagents to establish a cleaner and greener mineral processing. The mixotrophic bacterium Citrobacter sp. was adapted with galena (PbS) concentrate or sphalerite (ZnS) concentrate or silica (SiO2) mineral to modify the hydrophobicity of mineral surfaces as described by contact angle measurements, scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM–EDS), and Fourier transform infrared (FTIR) spectroscopy. Furthermore, the bacterium application as potential flotation reagents in the bioflotation of complex Pb–Zn ore in a 2.5-l laboratory-scale Denver flotation cell showed that the mixotrophic bacterium could function as flotation bioreagents by producing metabolites apart from its bacterial cells. The bacterial action as flotation bioreagents included collector, frother, and depressant due to its capability in producing biosurfactants and oxidizing sulfur with a moderate capacity in oxidizing iron. Its function yielded the high flotation recovery of lead (Pb: ~ 90%) and zinc (Zn: ~ 80%) and higher Pb and Zn grade in concentrate with respect to pH, conditioning time, and bacterial cell concentration. From an industrial viewpoint, the findings of this study might be very prospective for the improvement of more cost-effective and eco-friendly flotation reagents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Govender Y, Gericke M (2011) Extracellular polymeric substances (EPS) from bioleaching systems and its application in bioflotation. Miner Eng 24:1122–1127. https://doi.org/10.1016/j.mineng.2011.02.016

    Article  CAS  Google Scholar 

  2. Han G, Wen S, Wang H, Feng Q (2019) Effect of starch on surface properties of pyrite and chalcopyrite and its response to flotation separation at low alkalinity. Miner Eng 143:106015. https://doi.org/10.1016/j.mineng.2019.106015

    Article  CAS  Google Scholar 

  3. Khoso SA, Hu Y, Lyu F et al (2019) Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant. J Clean Prod 232:888–897. https://doi.org/10.1016/j.jclepro.2019.06.008

    Article  CAS  Google Scholar 

  4. Merma AG, Torem ML, Morán JJV, Monte MBM (2013) On the fundamental aspects of apatite and quartz flotation using a Gram positive strain as a bioreagent. Miner Eng 48:61–67. https://doi.org/10.1016/j.mineng.2012.10.018

    Article  CAS  Google Scholar 

  5. Sarvamangala H, Natarajan KA, Girisha ST (2013) Microbially-induced pyrite removal from galena using Bacillus subtilis. Int J Miner Process 120:15–21. https://doi.org/10.1016/j.minpro.2013.02.005

    Article  CAS  Google Scholar 

  6. Dıáz-López CV, Pecina-Trevinõ ET, Orrantia-Borunda E (2012) A study of bioflotation of chalcopyrite and pyrrhotite mixtures in presence of L. ferrooxidans. Can Metall Q 51:118–125. https://doi.org/10.1179/0008443312Z.00000000025

    Article  Google Scholar 

  7. Pecina-Treviño ET, Ramos-Escobedo GT, Gallegos-Acevedo PM et al (2012) Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation. Can J Microbiol 58:1073–1083. https://doi.org/10.1139/w2012-072

    Article  CAS  Google Scholar 

  8. Didyk AM, Sadowski Z (2012) Flotation of serpentinite and quartz using biosurfactants. Physicochem Probl Miner Process 48:607–618. https://doi.org/10.5277/ppmp120224

    Article  CAS  Google Scholar 

  9. Chandraprabha MN, Natarajan KA (2006) Surface chemical and flotation behaviour of chalcopyrite and pyrite in the presence of Acidithiobacillus thiooxidans. Hydrometallurgy 83:146–152. https://doi.org/10.1016/j.hydromet.2006.03.021

    Article  CAS  Google Scholar 

  10. Chandraprabha MN, Natarajan KA, Somasundaran P (2005) Selective separation of pyrite from chalcopyrite and arsenopyrite by biomodulation using Acidithiobacillus ferrooxidans. Int J Miner Process 75:113–122. https://doi.org/10.1016/j.minpro.2004.08.014

    Article  CAS  Google Scholar 

  11. Chandraprabha MN, Natarajan KA, Modak JM (2004) Selective separation of pyrite and chalcopyrite by biomodulation. Colloids Surf B Biointerfaces 37:93–100. https://doi.org/10.1016/j.colsurfb.2004.06.011

    Article  CAS  Google Scholar 

  12. Subramanian S, Santhiya D, Natarajan KA (2003) Surface modification studies on sulphide minerals using bioreagents. Int J Miner Process 72:175–188. https://doi.org/10.1016/S0301-7516(03)00097-8

    Article  CAS  Google Scholar 

  13. Silva AC, Valentim D, Cara C et al (2018) Apatite bioflotation using spent yeast (Saccharomyces cerevisiae) cells as collector. Tecnol em Met Mater Miner 15:475–480

    Article  CAS  Google Scholar 

  14. Luque Consuegra G, Kutschke S, Rudolph M, Pollmann K (2020) Halophilic bacteria as potential pyrite bio-depressants in Cu–Mo bioflotation. Miner Eng 145:106062. https://doi.org/10.1016/j.mineng.2019.106062

    Article  CAS  Google Scholar 

  15. Hacha RR, Leonardotorem M, Merma AG, Figueiredo V (2018) Electro flotation of fine hematite particles with Rhodococcus opacus as a biocollector in a modified Partridge–Smith cell. Miner Eng 126:105–115. https://doi.org/10.1016/j.mineng.2018.06.025

    Article  CAS  Google Scholar 

  16. Merma AG, Oliv CAC, Torem ML, Santos BF (2018) Comparison study of hematite bioflotation by R. erythropolis and its biosurfactant: experiments and neural network modeling. Chem Eng Trans 65:439–444. https://doi.org/10.3303/CET1865074

    Article  Google Scholar 

  17. San Martín F, Kracht W, Vargas T (2018) Biodepression of pyrite using Acidithiobacillus ferrooxidans in seawater. Miner Eng 117:127–131. https://doi.org/10.1016/j.mineng.2017.11.005

    Article  CAS  Google Scholar 

  18. San Martín F, Kracht W, Vargas T, Rudolph M (2020) Mechanisms of pyrite biodepression with Acidithiobacillus ferrooxidans in seawater flotation. Miner Eng 145:106067. https://doi.org/10.1016/j.mineng.2019.106067

    Article  CAS  Google Scholar 

  19. Merma AG, Olivera CAC, Hacha RR et al (2019) Optimization of hematite and quartz bioflotation by AN artificial neural network (ANN). J Mater Res Technol 8:3076–3087. https://doi.org/10.1016/j.jmrt.2019.02.022

    Article  CAS  Google Scholar 

  20. Bleeze B, Zhao J, Harmer SL (2018) Selective attachment of Leptospirillum ferrooxidans for separation of chalcopyrite and pyrite through bio-flotation. Minerals 8:7–14. https://doi.org/10.3390/min8030086

    Article  CAS  Google Scholar 

  21. Kim G, Choi J, Silva RA et al (2017) Feasibility of bench-scale selective bioflotation of copper oxide minerals using Rhodococcus opacus. Hydrometallurgy 168:94–102. https://doi.org/10.1016/j.hydromet.2016.06.029

    Article  CAS  Google Scholar 

  22. Kim G, Park K, Choi J et al (2015) Bioflotation of malachite using different growth phases of Rhodococcus opacus: effect of bacterial shape on detachment by shear flow. Int J Miner Process 143:98–104. https://doi.org/10.1016/j.minpro.2015.09.012

    Article  CAS  Google Scholar 

  23. Sanwani E, Mirahati RZ, Chaerun SK (2017) Recovery of copper from pyritic copper ores using a biosurfactant-producing mixotrophic bacterium as bioflotation reagent. Solid State Phenom 262:181–184. https://doi.org/10.4028/www.scientific.net/SSP.262.181

    Article  Google Scholar 

  24. Sanwani E, Hidayati D, Khodijah Chaerun S (2016) Utilization of the bacteria Bacillus pumilus and Citrobacter youngae as flotation bioreagents in the microflotation of chalcopyrite, pyrite, and silica. Microbiol Indones 10:15–22. https://doi.org/10.5454/mi.10.1.3

    Article  Google Scholar 

  25. Sanwani E, Chaerun S, Mirahati RZ, Wahyuningsih T (2016) Bioflotation: bacteria-mineral interaction for eco-friendly and sustainable mineral processing. Procedia Chem 19:666–672. https://doi.org/10.1016/j.proche.2016.03.068

    Article  CAS  Google Scholar 

  26. Sanwani E, Mirahati RZ, Chaerun SK (2015) Possible role of the biosurfactant-producing and Fe–S-oxidizing bacterium in silicate and sulfide bioflotation processes. Adv Mater Res 1130:493–498. https://doi.org/10.4028/www.scientific.net/amr.1130.493

    Article  Google Scholar 

  27. Sanwani E, Wahyuningsih T, Chaerun SK (2015) Assessment of surface properties of silica-bacterial cell complex: a potential application for silicate bioflotation processes. Adv Mater Res 1130:515–518. https://doi.org/10.4028/www.scientific.net/amr.1130.515

    Article  Google Scholar 

  28. Mubarok MZ, Winarko R, Chaerun SK et al (2017) Improving gold recovery from refractory gold ores through biooxidation using iron-sulfur-oxidizing/sulfur-oxidizing mixotrophic bacteria. Hydrometallurgy 168:69–75. https://doi.org/10.1016/j.hydromet.2016.10.018

    Article  CAS  Google Scholar 

  29. Chaerun SK, Putri EA, Mubarok MZ (2020) Bioleaching of Indonesian galena concentrate with an iron- and sulfur-oxidizing mixotrophic bacterium at room temperature. Front Microbiol 11:1–14. https://doi.org/10.3389/fmicb.2020.557548

    Article  Google Scholar 

  30. Sharma PK (2001) Surface studies relevant to microbial adhesion and bioflotation of sulphide minerals. Luleå University of Technology, Luleå

    Google Scholar 

  31. Sharma PK, Rao KH, Forssberg KSE, Natarajan KA (2001) Surface chemical characterisation of Paenibacillus polymyxa before and after adaptation to sulfide minerals. Int J Miner Process 62:3–25. https://doi.org/10.1016/S0301-7516(00)00043-0

    Article  CAS  Google Scholar 

  32. Williams DL, Kuhn AT, Amann MA et al (2010) Computerised measurement of contact angles. Galvanotechnik 101:2502–2512

    Google Scholar 

  33. Chaerun SK, Tazaki K, Okuno M (2013) Montmorillonite mitigates the toxic effect of heavy oil on hydrocarbon-degrading bacterial growth: implications for marine oil spill bioremediation. Clay Miner 48:639–654. https://doi.org/10.1180/claymin.2013.048.4.17

    Article  CAS  Google Scholar 

  34. Chaerun SK, Syarif R, Wattimena RK (2020) Bacteria incorporated with calcium lactate pentahydrate to improve the mortar properties and self-healing occurrence. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-020-74127-4

    Article  CAS  Google Scholar 

  35. Ellerbrock RH, Kaiser M (2005) Stability and composition of different soluble soil organic matter fractions—evidence from δ13C and FTIR signatures. Geoderma 128:28–37

    Article  CAS  Google Scholar 

  36. Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104:1675–1684. https://doi.org/10.1111/j.1365-2672.2007.03701.x

    Article  CAS  Google Scholar 

  37. Farahat M, Hirajima T, Sasaki K (2010) Adhesion of Ferroplasma acidiphilum onto pyrite calculated from the extended DLVO theory using the van Oss–Good–Chaudhury approach. J Colloid Interface Sci 349:594–601. https://doi.org/10.1016/j.jcis.2010.05.091

    Article  CAS  Google Scholar 

  38. Macaskie LE, Bonthrone KM, Yong P, Goddard DT (2000) Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146:1855–1867. https://doi.org/10.1099/00221287-146-8-1855

    Article  CAS  Google Scholar 

  39. Mandal SM, Sharma S, Pinnaka AK et al (2013) Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter. BMC Microbiol. https://doi.org/10.1186/1471-2180-13-152

    Article  Google Scholar 

  40. Werkman CH, Gillen GF (1932) Bacteria producing trimethylene glycol 1. J Bacteriol 23:167–182. https://doi.org/10.1128/jb.23.2.167-182.1932

    Article  CAS  Google Scholar 

  41. Luo X, Feng B, Wong C et al (2016) The critical importance of pulp concentration on the flotation of galena from a low grade lead-zinc ore. J Mater Res Technol 5:131–135. https://doi.org/10.1016/j.jmrt.2015.10.002

    Article  CAS  Google Scholar 

  42. Suyantara GPW, Hirajima T, Miki H et al (2020) Effect of H2O2 and potassium amyl xanthate on separation of enargite and tennantite from chalcopyrite and bornite using flotation. Miner Eng 152:106371. https://doi.org/10.1016/j.mineng.2020.106371

    Article  CAS  Google Scholar 

  43. Ohmura N, Kitamura K, Saiki H (1993) Mechanism of microbial flotation using Thiobacillus ferrooxidans for pyrite suppression. Biotechnol Bioeng 41:671–676. https://doi.org/10.1002/bit.260410611

    Article  CAS  Google Scholar 

  44. Rohwerder T, Sand W (2007) Mechanisms and biochemical fundamentals of bacterial metal sulfide oxidation. In: Microbial processing of metal sulfides. Springer, Dordrecht, pp 35–58. https://doi.org/10.1007/1-4020-5589-7_2

  45. Mehrabani JV, Mousavi SM, Noaparast M (2011) Evaluation of the replacement of NaCN with Acidithiobacillus ferrooxidans in the flotation of high-pyrite, low-grade lead-zinc ore. Sep Purif Technol 80:202–208. https://doi.org/10.1016/j.seppur.2011.04.006

    Article  CAS  Google Scholar 

  46. Vasanthakumar B, Ravishankar H, Subramanian S (2012) A novel property of DNA—as a bioflotation reagent in mineral processing. PLoS ONE 7:1–7. https://doi.org/10.1371/journal.pone.0039316

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge all the members of Geomicrobiology-Biomining & Biocorrosion Laboratory and Microbial Culture Collection Laboratory, Biosciences and Biotechnology Research Center (BBRC), Institut Teknologi Bandung for their cooperation and assistance. This research was financially supported by a grant from the 2019 Research Program (P3MI), Institute for Research and Community Services, Institut Teknologi Bandung, Indonesia. We also thank the editor and three anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

HH conducted the experiments under the supervision of ES and SKC. MAR made figures and tables. SKC and ES wrote and revised the manuscript. All authors reviewed the manuscript before submission.

Corresponding authors

Correspondence to Edy Sanwani or Siti Khodijah Chaerun.

Ethics declarations

Conflict interest

All authors (ES, SKC, HH, and MAR) declare that they have no competing interests.

Additional information

The contributing editor for this article was Grace Ofori-Sarpong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanwani, E., Chaerun, S.K., Husni, H. et al. Surface Modification of Galena Concentrate, Sphalerite Concentrate, and Silica by the Bacterium Citrobacter sp. and Its Application to Green Flotation of Complex Pb–Zn Ores. J. Sustain. Metall. 7, 1265–1279 (2021). https://doi.org/10.1007/s40831-021-00399-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00399-3

Keywords

Navigation