A Dynamic Thermochemistry-Based Process Model for Lead Smelting in the TSL Process

Abstract

The first dynamic process model of a Top Submerged Lance (TSL) furnace based on a fundamental phase solution thermochemical basis is reported. This development is required to understand fully the role of TSL as an enabler of the circular economy, i.e., how well it brings materials back into the cycle. To achieve this understanding, the volume inside the furnace has been divided into six zones (bullion, bullion/slag interface, slag, bubble, splash, freeboard), gleaning from industrial experience and roughly guided by CFD studies by the authors. For each of these zones, local equilibrium is assumed. The model is implemented for lead smelting using SimuSage and has been benchmarked against reported production data. It is shown that the model can be used to optimize processing parameters: the process gas flow through the lance, to achieve a compromise between maximization of bullion production and process stability by avoiding the formation of matte phase. In a virtual experiment, a concentrate poorer in PbS is used and it is proposed how processing conditions should be modified to achieve a stable process and how the maximum achievable productivity changes. Finally, the model is applied to predict the partitioning of indium, as an important technology element from a typical recycling feed between the bullion, slag, and dust phases. It is observed that indium reports mainly to the slag phase during the smelting stage.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Habashi F (1997) Handbook of extractive metallurgy. WILEY-VCH, Weinheim

    Google Scholar 

  2. 2.

    Hughes S, Reuter MA, Baxter R, Kaye A (2008) Ausmelt Technology for lead and zinc processing. In: Lead and zinc 2008. The Southern African Institute of Mining and Metallurgy, Johannesburg, pp 147–162

  3. 3.

    Reuter MA (2014) GDMB Lead Committee Meeting, Gothenburg, Sweden

  4. 4.

    Obiso D, Kriebitzsch S, Reuter M, Meyer B (2019) The importance of viscous and interfacial forces in the hydrodynamics of the top-submerged-lance furnace. Metall Mater Trans B 50:2403–2420

    CAS  Article  Google Scholar 

  5. 5.

    Creedy S, Reuter M, Hughes S, Swayn G, Andrews R, Matusewicz R (2010) The versatility of Outotec’s ausmelt process for lead production. In: Lead zinc. Wiley, Vancouver, pp 439–450

  6. 6.

    Reuter MA (2016) Digitalizing the circular economy. Metall Mater Trans B 47:3194–3220

    CAS  Article  Google Scholar 

  7. 7.

    Schlesinger ME, King M, Sole K, Davenport W (2011) Extractive metallurgy of copper, 5th edn. Elsevier, Oxford, pp 155–178

    Book  Google Scholar 

  8. 8.

    Kapusta J (2018) In: Extraction 2018 Conference

  9. 9.

    Obiso D, Akashi M, Kriebitzsch S, Meyer B, Reuter M, Eckert S, Richter A (2020) CFD modeling and experimental validation of top-submerged-lance gas injection in liquid metal. Metall Mater Trans B 51:1509–1525

    CAS  Article  Google Scholar 

  10. 10.

    Huda N, Naser J, Brooks G, Reuter MA, Matusewicz RW (2012) Computational Fluid Dynamics (CFD) investigation of submerged combustion behavior in a tuyere blown slag-fuming furnace. Metall Mater Trans B 43:39–55

    CAS  Article  Google Scholar 

  11. 11.

    Gu H, Song X, Lan X, Baldock R, Andrews R, Reuter M (2012) Design and commissioning of the Ausmelt TSL lead smelter at Yunnan Tin Company Limited. International Smelting Technology Symposium. Wiley, Orlando, pp 11–21

    Google Scholar 

  12. 12.

    Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi AE, Hack K, Jung IH, Kang YB, Melançon J, Pelton AD, Petersen S, Robelin C, Sangster J, Spencer P, Van Ende MA (2016) FactSage thermochemical software and databases, 2010–2016. Calphad 54:35–53

    CAS  Article  Google Scholar 

  13. 13.

    Reuter MA, van Schaik A, Gutzmer J, Bartie N, Abadías-Llamas A (2019) Challenges of the circular economy: a material, metallurgical, and product design perspective. Annu Rev Mater Res 49:253–274

    CAS  Article  Google Scholar 

  14. 14.

    Szekely J (1988) The mathematical modeling revolution in extractive metallurgy. Metall Mater Trans B 19:525–540

    Article  Google Scholar 

  15. 15.

    van Schalkwyk RF, Reuter MA, Gutzmer J, Stelter M (2018) Challenges of digitalizing the circular economy: assessment of the state-of-the-art of metallurgical carrier metal platform for lead and its associated technology elements. J Clean Prod 186:585–601

    Article  Google Scholar 

  16. 16.

    Verhoef EV, Dijkema GPJ, Reuter M (2004) Process knowledge, system dynamics, and metal ecology. J Ind Ecol 8:23–43

    CAS  Article  Google Scholar 

  17. 17.

    Van Ende M, Jung I (2017) A kinetic ladle furnace process simulation model: effective equilibrium reaction zone model using FactSage macro processing. Metall Mater Trans B 48:28–36

    Article  Google Scholar 

  18. 18.

    Van Ende M, Kim Y, Cho M (2011) A Kinetic model for the Ruhrstahl Heraeus (RH) degassing process. Metall Mater Trans B 42:477–489

    Article  Google Scholar 

  19. 19.

    Jung I, Van Ende M (2020) Computational thermodynamic calculations: FactSage from CALPHAD thermodynamic database to virtual process simulation. Metall Mater Trans B 51:1851–1874

    CAS  Article  Google Scholar 

  20. 20.

    Khadhraoui S, Odenthal H, Krause F, Übber N, Klos W, Monheim P, Hack K, to Baben M (2019) In: METEC and 4th European Steel Technology and Application Days (ESTAD), Düsseldorf

  21. 21.

    De Vos L, Bellemans I, Vercruyssen C, Verbeken K (2019) Basic oxygen furnace: assessment of recent physicochemical. Models Metall Mater Trans B 50:2647–2066

    Article  Google Scholar 

  22. 22.

    Modigell M, Guthenke A, Monheim P, Hack K (2008) Non-equilibrium modelling for the LD converter. In: The SGTE casebook, 2nd ed. Woodhead Publishing, Cambridge, pp 425–436

  23. 23.

    Harvey J, Gheribi AE (2014) Process simulation and control optimization of a blast furnace using classical thermodynamics combined to a Direct Search Algorithm. Metall Mater Trans B 45:307–327

    CAS  Article  Google Scholar 

  24. 24.

    Petersen S, Hack K, Monheim P, Pickartz U (2007) SimuSage—the component library for rapid process modelling and its applications. Int J Mater Res 98:946–953

    CAS  Article  Google Scholar 

  25. 25.

    Lennartsson A, Engström F, Björkman B, Samuelsson C (2013) Development of a model for copper converting. Can Metall Q 52:422–429

    CAS  Article  Google Scholar 

  26. 26.

    Jahanshahi S, Wright S (2017) Kinetics of reduction of CaO-FeOx -MgO-PbO-SiO2 slags by CO-CO2 gas mixtures. Metall Mater Trans B 48:2057–2066

    CAS  Article  Google Scholar 

  27. 27.

    Min DJ, Fruehan RJ (1992) Rate of reduction of FeO in slag by Fe-C drops. Metall Mater Trans B 23:29–37

    Article  Google Scholar 

  28. 28.

    Story SR, Sarma B, Fruehan RJ (1998) Reduction of FeO in smelting slags by solid carbon: re-examination of the influence of the gas-carbon reaction. Metall Mater Trans B 29:929–932

    Article  Google Scholar 

  29. 29.

    Sarma B, Cramb AW, Fruehan RJ (1996) Reduction of FeO in smelting slags by solid carbon: experimental results. Metall Mater Trans B 27:717–730

    Article  Google Scholar 

  30. 30.

    Fruehan RJ, Goldstein D, Sarma B, Story SR, Glaws PC, Pasewicz HU (2000) Recent advances in the fundamentals of the kinetics of steelmaking reactions. Metall Mater Trans B 31:891–898

    Article  Google Scholar 

  31. 31.

    Kyllo AK, Richards GG (1991) A mathematical model of the nickel converter: Part I. Model development and verification. Metall Mater Trans B 22:153–161

    Article  Google Scholar 

  32. 32.

    Rezende J, van Schalkwyk RF, Reuter, MA, to Baben M, https://github.com/GTT-Technologies/SimuSage-Lead-TSL-Oxidation

  33. 33.

    Jahanshani S, Wright S (1992) Studies of the reduction kinetics of metallurgical lead slags. In: 4th international conference of molten slags and fluxes. ISIJ, Sendai, pp.572–577

  34. 34.

    Dal I, Jahanshani S, Rankin WJ (1997) Effects of iron oxide and sulphur content on the rate of reduction of ZnO from slags by CO-CO2 gas mixtures. In: 5th international conference of molten slags and fluxes. TMS-ISS, Warrendale, PA, pp.125–133

  35. 35.

    Sasaki Y, Hara S, Gaskell DR, Belton GR (1984) Isotope exchange studies of the rate of dissociation of CO2 on liquid iron oxides and CaO-saturated calcium ferrites. Metall Mater Trans B 15:563–571

    Article  Google Scholar 

  36. 36.

    Li Y, Ratchev IP, Lucas JA, Evans GM, Belton GR (2000) Rate of interfacial reaction between liquid iron oxide and CO-CO2. Metall Mater Trans B 31:1049–1057

    Article  Google Scholar 

  37. 37.

    Pajarre R, Koukkari P, Kangas P (2016) Constrained and extended free energy minimisation for modelling of processes and materials. Chem Eng Sci 146:244–258

    CAS  Article  Google Scholar 

  38. 38.

    Kim B, Jeong S, Lee J, Shin D, Moon N (2012) Behaviors of lead and zinc in Top Submerged Lance (TSL) plant at Sukpo zinc refinery. Mater Trans 53:985–990

    CAS  Article  Google Scholar 

  39. 39.

    Anindya A, Swinbourne DR, Reuter MA, Matusewicz RW (2014) Distribution of elements between copper and FeOx –CaO–SiO2 slags during pyroprocessing of WEEE: Part 2—indium. Trans Inst Min Metall C 123:43–52

    CAS  Google Scholar 

  40. 40.

    Jantzen T, Hack K, Yazhenskikh E, Müller M (2018) Thermodynamic assessment of oxide system In2O3-SnO2-ZnO. Chim. Techno Acta 5:166–188

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the German Federal Ministry of Education and Research for financial support of the project “QuaResPro—From Quantum-Mechanics to Resource Efficient Product Design” (BMBF 033RK058A) in the scope of the funding initiative “KMU-Innovativ: Ressourceneffizienz und Klimaschutz.” Joao Rezende thanks Bruno Reis and Stephan Petersen for the support in the usage of the Simusage package and Guixuan Wu for providing important information concerning slag properties.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Rezende.

Ethics declarations

Conflict of interest

Moritz to Baben and Joao Rezende are employees at GTT Technologies, a company that sells the software and thermodynamic databases that are used in the work described in the present paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The contributing editor for this article was Sharif Jahanshahi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezende, J., van Schalkwyk, R.F., Reuter, M.A. et al. A Dynamic Thermochemistry-Based Process Model for Lead Smelting in the TSL Process. J. Sustain. Metall. (2021). https://doi.org/10.1007/s40831-021-00387-7

Download citation

Keywords

  • Process simulation
  • Computational thermochemistry
  • Lead metallurgy
  • Recycling
  • Dynamic model
  • Local equilibrium