Research on Indirect Carbonation of Two-step Leaching for the Purpose of Utilizing the Alkalinity of Steel Slag


A process that utilizes high alkaline properties of steel slag to promote the carbonation reaction while saving acid and alkali consumption was proposed. The experimental results verified the feasibility of the indirect carbonation process involving acetic acid to carry out the carbonation reaction without the addition of alkali. It was concluded that steel slag has high alkalinity, and the alkaline components of steel slag can be preserved by two-step leaching to contribute to the carbonation reaction. The results show that under the condition of a liquid–solid ratio of 10, the pH of the mixed leachate obtained by leaching with 0.25–1 M acetic acid for steel slag with a particle size of < 38 μm were all above 11.7. At the same time, the calcium ions leaching ratio of the two-step method was also higher than that of the one-step method. In the case of liquid–solid ratio was 20 and acetic acid concentration was 0.25 M, the leaching ratio of calcium ions of one-step method was 28.84%, while the total leaching ratio of the two-step method was 32.18%, which increased by 11.61%. The results of X-ray diffraction analysis of the carbonation products of the two-step method show that the main component of the product was calcite and a small amount of aragonite, which indicates that the two-step method can carry out the carbonation reaction to produce calcium carbonate.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Bonenfant D, Sauvé S, Hausler R, Niquette P, Mimeault M, Kharoune M, (2008) CO2 sequestration potential of steel slags at ambient pressure and temperature. Ind Eng Chem Res 47:7610–7616.

    CAS  Article  Google Scholar 

  2. 2.

    EPA (2020) Global Greenhouse Gas Emissions Data.

  3. 3.

    IEA(2020) Energy related CO2 emissions, 1990–2019 [M]. Paris.

  4. 4.

    Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-valer M (2014) A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev 43(23):8049–8080

    CAS  Article  Google Scholar 

  5. 5.

    Zhang H, Zuo Q, Wei C, Lin X, Dong J, Liao C, Xu A (2020) Closed-circulating CO2 sequestration process evaluation utilizing wastes in steelmaking plant. Sci Total Environ.

    Article  Google Scholar 

  6. 6.

    Seifritz, (1990) CO2 disposal by means of silicates. Nature 345(6275):486–486

    Article  Google Scholar 

  7. 7.

    Bobicki ER, Liu QX, Xu ZH, Zeng HB (2012) Carbon capture and storage using alkaline industrial wastes. Prog Energy Combust Sci 38(2):302–320.

    CAS  Article  Google Scholar 

  8. 8.

    Wei C, Dong J, Zhang H, Wang X (2020) Kinetics model adaptability analysis of CO2 sequestration process utilizing steelmaking slag and cold-rolling wastewater. J Hazard Mater.

    Article  Google Scholar 

  9. 9.

    Schmidt R, Rmanosky B (2001) Program Overviews: CO2 Mineral Sequestration; proceedings of the MC Workshop (Ed), Pittsburgh, USA, F.

  10. 10.

    Bonenfant D, Kharoune L, Sauvé S, Hausler R, Niquette P, Mimeault M, Kharoune M, (2008) CO2 sequestration by aqueous red mud carbonation at ambient pressure and temperature. Ind Eng Chem Res 47:7617.

    CAS  Article  Google Scholar 

  11. 11.

    Chiang P, Pan S (2017) Carbon dioxide mineralization and utilization. Springer, NY

    Book  Google Scholar 

  12. 12.

    Teir S, Eloneva S, Fogelholm C, Zevenhoven R (2007) Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. Energy 32(4):528–539.

    CAS  Article  Google Scholar 

  13. 13.

    Kodama S, Nishimoto T, Yamamoto N, Yogo K, Yamada K. Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution. Energy 33(5):776–784.

  14. 14.

    Sun Y, Yao M, Zhang J, Yang G (2011) Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chem Eng J 173(2):437–445.

    CAS  Article  Google Scholar 

  15. 15.

    Dri M, Sanna A, Maroto M, Mercedes, (2014) Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products. Appl Energy 113:515–523.

    CAS  Article  Google Scholar 

  16. 16.

    Yadav S, Mehra A (2017) Dissolution of steel slags in aqueous media. Environ Sci Pollut Res 24(19):16305–16315.

    CAS  Article  Google Scholar 

  17. 17.

    Bilen M, Altiner M, Yildirim M (2018) Evaluation of steelmaking slag for CO2 fixation by leaching-carbonation process. Part Sci Technol 36(3):368–377.

    CAS  Article  Google Scholar 

  18. 18.

    Hoellen D, Berneder I, Tous F, Stoellner M, Sedlazeck K, Schwarz T, Aldrian A, Lehner M (2018) Stepwise treatment of ashes and slags by dissolution, precipitation of iron phases and carbonate precipitation for production of raw materials for industrial applications. Waste Manage 78:750–762.

    CAS  Article  Google Scholar 

  19. 19.

    Liu Q, Liu W, Hu J, Wang L, Gao J, Liang B, Yue H, Zhang G, Luo D, Li C (2018) Energy-efficient mineral carbonation of blast furnace slag with high value-added products. J Cleaner Production 197:242–252.

    CAS  Article  Google Scholar 

  20. 20.

    Owais M, Jarvinen M, Taskinen P, Said A (2019) Experimental study on the extraction of calcium, magnesium, vanadium and silicon from steelmaking slags for improved mineral carbonation of CO2. J CO2 Util 31:1–7.

    CAS  Article  Google Scholar 

  21. 21.

    Ragipani R, Bhattacharya S, Suresh AK (2019) Kinetics of steel slag dissolution: from experiments to modelling. Proc Math Phys Eng Sci 475(2224):20180830.

    Article  Google Scholar 

  22. 22.

    Zhao Q, Li J, You K, Liu C (2020) Recovery of calcium and magnesium bearing phases from iron- and steelmaking slag for CO2 sequestration. Process Saf Environ Prot 135:81–90.

    CAS  Article  Google Scholar 

  23. 23.

    Stewart DI, Bray AW, Udoma G, Hobson AJ, Mayes WM, Rogerson M, Burke IT (2018) Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag. Environ Sci Pollut Res 25(10):9861–9872.

    CAS  Article  Google Scholar 

  24. 24.

    Santos RM, Van BJ, Vandevelde E, Mertens G, Elsen J, Van GT (2013) Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: Effect of process parameters on geochemical properties. Inter J Greenhouse Gas Control 17:32–45.

    CAS  Article  Google Scholar 

  25. 25.

    Santos RM, Van GT (2011) Process intensification routes for mineral carbonation. Greenhouse Gases: Sci Technol 1(4):287–293.

    CAS  Article  Google Scholar 

  26. 26.

    Eloneva S, Teir S, Salminen J, Fogelholm C, Zevenhoven R (2008) Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy 33(9):1461–1467.

    CAS  Article  Google Scholar 

  27. 27.

    Eloneva S, Teir S, Salminen J, Fogelholm C, Zevenhoven R (2008) Steel converter slag as a raw material for precipitation of pure calcium carbonate. Ind Eng Chem Res 47:7104.

    CAS  Article  Google Scholar 

  28. 28.

    Hung WJ, Lai IK, Chen YW, Hung SB, Huang HP, Lee MJ, Yu CC (2006) Process chemistry and design alternatives for converting dilute acetic acid to esters in reactive distillation. Ind Eng Chem Res 45:1722.

    CAS  Article  Google Scholar 

  29. 29.

    Dionysiou D, Tsianou M, Botsaris G (2000) Extractive crystallization for the production of calcium acetate and magnesium acetate from carbonate sources. Ind Eng Chem Res 39:4192.

    CAS  Article  Google Scholar 

  30. 30.

    Bao W, Li H, Zhang Y (2010) Selective Leaching of Steelmaking Slag for Indirect CO2 Mineral Sequestration. Ind Eng Chem Res 49(5):2055–2063.

    CAS  Article  Google Scholar 

  31. 31.

    Eloneva S, Teir S, Revitzer H, Salminen J, Said A, Fogelholm CJ, Zevenhoven R (2009) Reduction of CO2 emissions from steel plants by using steelmaking slags for production of marketable calcium carbonate. Steel Res Int 80(6):415–421.

    CAS  Article  Google Scholar 

  32. 32.

    Said A, Mattila H, Järvinen M, Zevenhoven R (2012) Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2. Appl Energy 112:765–771.

    CAS  Article  Google Scholar 

  33. 33.

    Azdarpour A, Asadullah M, Mohammadian E, Hamidi H, Junin R, Karaei MA (2015) A review on carbon dioxide mineral carbonation through pH-swing process. Chem Eng J 279:615–630.

    CAS  Article  Google Scholar 

  34. 34.

    Ah-hyung AP, Raja J, Liang SF (2003) CO2 mineral sequestration: chemically enhanced aqueous carbonation of serpentine. Canadian J Chem Eng 81:885–890.

    Article  Google Scholar 

  35. 35.

    Eloneva S, Teir S, Salminen J, Fogelholm CJ, Zevenhoven RI (2008) Steel converter slag as a raw material for precipitation of pure calcium carbonate. Res Eng Chem 47(18):7104–7111.

    CAS  Article  Google Scholar 

  36. 36.

    Wang X, Maroto VM (2011) Integration of CO2 capture and mineral carbonation by using recyclable ammonium salts. Chemsuschem 4(9):1291–1300.

    CAS  Article  Google Scholar 

  37. 37.

    Ah-hyung AP, M AS (2005) Carbon dioxide sequestration: chemical and physical activation of aqueous carbonation of mg-bearing minerals and pH swing process (PhD dissertation). The Ohio State University.

  38. 38.

    Haynes WM (2014) CRC Handbook of Chemistry and Physics(95th). CRC Press

    Book  Google Scholar 

  39. 39.

    Huijgen WJ, Witkamp GJ, Comans RN (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39(24):9676–9682.

    CAS  Article  Google Scholar 

  40. 40.

    Shedlovsky T, Kay RL (1956) The ionization constant of acetic acid in water-methanol mixtures at 25° from conductance measurements. J Phys Chem 23:151–155.

    Article  Google Scholar 

  41. 41.

    Baciocchi R, Costa G, Polettini A, Pomi R (2009) Influence of particle size on the carbonation of stainless steel slag for CO2 storage. Energy Procedia 1(1):4859–4866.

    CAS  Article  Google Scholar 

  42. 42.

    Pan SY, Chiang PC, Chen YH, Chen CD, Lin Y, Chang EE (2013) Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed. Environ Sci Technol 47(23):13677–13685.

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Grant No. 51534001).

Author information



Corresponding author

Correspondence to Dongfeng He.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The contributing editor for this article was João António Labrincha Batista.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., He, D. Research on Indirect Carbonation of Two-step Leaching for the Purpose of Utilizing the Alkalinity of Steel Slag. J. Sustain. Metall. (2021).

Download citation


  • Two-step leaching
  • Alkalinity
  • Indirect carbonation
  • Leaching ratio
  • CO2 sequestration