• Thematic Section: Mine Tailings: Problem or Opportunity? Towards a Combined Remediation and Resource Recovery Approach
  • Published:

Fundamental Insights in Alcoholic Ammoniacal Systems for Selective Solvometallurgical Extraction of Cu, Zn, and Pb from Tailings


This study investigates the use of novel alcoholic ammoniacal systems for the extraction of Cu, Zn, and Pb from Fe-rich residue materials as an alternative technology to traditional aqueous ammoniacal extraction. To this purpose, methanol- and ethanol-based ammoniacal solutions were prepared with several ammonium salts (ammonium chloride, -acetate, -carbonate, and -sulfate) and tested for their metal extraction potential (i.e., metal solubility and selectivity) in synthetic systems with metal sulfate salts of Cu, Zn, Pb, and Fe. The obtained metal solubility results were interpreted by modeling the conditions of the different alcoholic ammoniacal systems (NH3 concentration, pH), and used to select the most promising extraction systems. Furthermore, the initial alkalinity of these selected ammoniacal systems was adapted with stoichiometric NaOH additions, which proved to be a determining factor for the NH3 concentration and the pH and, thus, also for the metal solubility and selectivity. Finally, in a case study on the extraction of Cu, Zn, and Pb from a roasted sulfidic tailing, the ammonium acetate NaOH methanol solution and the ammonium chloride methanol solution showed promising metal extraction efficiencies for Zn (> 40%) and Cu (> 27%), while a very low Fe concentration in the extraction solution was assured (< 0.3 mM). These results warrant further research to reveal the full potential of non-aqueous ammoniacal metal extraction.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Meng X, Han KN (1996) Principles and applications of ammonia leaching of metals - a review. Miner Process Extr Metall Rev 16:23–61. https://doi.org/10.1080/08827509608914128

    CAS  Article  Google Scholar 

  2. 2.

    Gargul K, Boryczko B (2015) Removal of zinc from dusts and sludges from basic oxygen furnaces in the process of ammoniacal leaching. Arch Civ Mech Eng 15:179–187. https://doi.org/10.1016/j.acme.2014.08.004

    Article  Google Scholar 

  3. 3.

    Niinae M, Komatsu N, Nakahiro Y et al (1996) Preferential leaching of cobalt, nickel and copper from cobalt-rich ferromanganese crusts with ammoniacal solutions using ammonium thiosulfate and ammonium sulfite as reducing agents. Hydrometallurgy 40:111–121

    CAS  Article  Google Scholar 

  4. 4.

    Katsiapi A, Tsakiridis PE, Oustadakis P, Agatzini-Leonardou S (2010) Cobalt recovery from mixed Co-Mn hydroxide precipitates by ammonia-ammonium carbonate leaching. Miner Eng 23:643–651. https://doi.org/10.1016/j.mineng.2010.03.006

    CAS  Article  Google Scholar 

  5. 5.

    Zipperian D, Raghavan S, Wilson JP (1988) Gold and silver extraction by ammoniacal thiosulfate leaching from a rhyolite ore. Hydrometallurgy 19:361–375. https://doi.org/10.1016/0304-386X(88)90041-2

    CAS  Article  Google Scholar 

  6. 6.

    Parhi PK, Panigrahi S, Sarangi K, Nathsarma KC (2008) Separation of cobalt and nickel from ammoniacal sulphate solution using Cyanex 272. Sep Purif Technol 59:310–317. https://doi.org/10.1016/j.seppur.2007.07.026

    CAS  Article  Google Scholar 

  7. 7.

    Knaislová A, Vu HN, Dvořák P (2018) Microwave and ultrasound effect on ammoniacal leaching of deep-sea nodules. Minerals 8:1–16. https://doi.org/10.3390/min8080351

    CAS  Article  Google Scholar 

  8. 8.

    Xu Y, Li J, Liu L (2016) Current status and future perspective of recycling copper by hydrometallurgy from waste printed circuit boards. Procedia Environ Sci 31:162–170. https://doi.org/10.1016/j.proenv.2016.02.022

    CAS  Article  Google Scholar 

  9. 9.

    Lu BCY, Graydon WF (1955) Rates of copper dissolution in aqueous ammonium hydroxide solutions. J Am Chem Soc 77:6136–6139. https://doi.org/10.1021/ja01628a012

    CAS  Article  Google Scholar 

  10. 10.

    Reilly IG, Scott DS (1977) The leaching of a chalcopyrite concentrate in ammonia. Can J Chem Eng 55:527–533. https://doi.org/10.1002/cjce.5450550508

    CAS  Article  Google Scholar 

  11. 11.

    Ku H, Jung Y, Jo M et al (2016) Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. J Hazard Mater 313:138–146. https://doi.org/10.1016/j.jhazmat.2016.03.062

    CAS  Article  Google Scholar 

  12. 12.

    Park KH, Mohapatra D, Reddy BR, Nam CW (2007) A study on the oxidative ammonia/ammonium sulphate leaching of a complex (Cu-Ni-Co-Fe) matte. Hydrometallurgy 86:164–171. https://doi.org/10.1016/j.hydromet.2006.11.012

    CAS  Article  Google Scholar 

  13. 13.

    Rudnik E, Pierzynka M, Handzlik P (2016) Ammoniacal leaching and recovery of copper from alloyed low-grade e-waste. J Mater Cycles Waste Manag 18:318–328. https://doi.org/10.1007/s10163-014-0335-x

    CAS  Article  Google Scholar 

  14. 14.

    Aracena A, Valencia A, Jerez O (2020) Ammoniacal system mechanisms for leaching copper from converter slag. Metals (Basel). https://doi.org/10.3390/met10060712

    Article  Google Scholar 

  15. 15.

    Williamson AJ, Verbruggen F, Chavez Rico VS et al (2021) Selective leaching of copper and zinc from primary ores and secondary mineral residues using biogenic ammonia. J Hazard Mater 403:123842. https://doi.org/10.1016/j.jhazmat.2020.123842

    CAS  Article  Google Scholar 

  16. 16.

    Schäfer D, Xia J, Vogt M et al (2007) Experimental investigation of the solubility of ammonia in methanol. J Chem Eng Data 52:1653–1659. https://doi.org/10.1021/je700033y

    CAS  Article  Google Scholar 

  17. 17.

    Huang LJ, Xue WL, Zeng ZX (2011) The solubility of ammonia in ethanol between 277.35 K and 328.15 K. Fluid Phase Equilib 303:80–84. https://doi.org/10.1016/j.fluid.2011.01.006

    CAS  Article  Google Scholar 

  18. 18.

    Patnaik P (2003) Handbook of inorganic chemicals. McGraw-Hill, New York

    Google Scholar 

  19. 19.

    Lide DR (2006) CRC handbook of chemistry and physics, 87th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  20. 20.

    Maclennan A, Hu Y (2017) Investigation of solvation effects on iron(II) and iron(III) salt solutions by X-ray absorption spectroscopy. Can J Chem 95:1170–1177. https://doi.org/10.1139/cjc-2017-0141

    CAS  Article  Google Scholar 

  21. 21.

    Girgin I, Erkal F (1993) Dissolution characteristics of scheelite in HClC2H5OHH2O and HClC2H5OH solutions. Hydrometallurgy 34:221–229. https://doi.org/10.1016/0304-386X(93)90036-D

    CAS  Article  Google Scholar 

  22. 22.

    Kopkova EK, Shchelokova EA, Gromov PB (2015) Processing of titanomagnetite concentrate with a hydrochloric extract of n-octanol. Hydrometallurgy 156:21–27. https://doi.org/10.1016/j.hydromet.2015.05.007

    CAS  Article  Google Scholar 

  23. 23.

    Choi S, Parameswaran S, Choi JH (2020) Understanding alcohol aggregates and the water hydrogen bond network towards miscibility in alcohol solutions: graph theoretical analysis. Phys. Chem. Chem. Phys. 22:17181–17195

    CAS  Article  Google Scholar 

  24. 24.

    Sager EE, Robinson RA, Bates RG (1964) Medium effects on the dissociation of weak acids in methanol-water solvents. J Res Natl Bur Stand Sect A, Phys Chem 68:305

    Article  Google Scholar 

  25. 25.

    Feng D, Van Deventer JSJ (2002) Leaching behaviour of sulphides in ammoniacal thiosulphate systems. Hydrometallurgy 63:189–200. https://doi.org/10.1016/S0304-386X(01)00225-0

    CAS  Article  Google Scholar 

  26. 26.

    Seidell A (1940) Solubilities of inorganic and metal organic compounds, 3d ed., v. 1. D van Nostrard, New York

  27. 27.

    House JE Jr (1980) Decomposition of ammonium carbonate and ammonium bicarbonate and proton affinities of the anions. Inorg Nucl Chem Lett 16:185–187

    CAS  Article  Google Scholar 

  28. 28.

    Petruševski VM, Monković M, Šoptrajanov B (2007) Demonstrations as a tool for ironing-out preconceptions: 1. On the reactions of alkali metal sulfates with concentrated sulfuric acid. Chem Educ 12:71–74

    Google Scholar 

  29. 29.

    Smith DW (1977) Ionic hydration enthalpies. J Chem Educ 54:540. https://doi.org/10.1021/ed054p540

    CAS  Article  Google Scholar 

  30. 30.

    Trompette JL, Arurault L, Fontorbes S, Massot L (2010) Influence of the anion specificity on the electrochemical corrosion of anodized aluminum substrates. Electrochim Acta 55:2901–2910. https://doi.org/10.1016/j.electacta.2009.12.063

    CAS  Article  Google Scholar 

  31. 31.

    Parker VB (1965) Thermal properties of aqueous uni-univalent electrolytes. US Government Printing Office, Washington, DC

    Book  Google Scholar 

  32. 32.

    Gregory AP, Clarke RN (2005) Traceable measurements of the static permittivity of dielectric reference liquids over the temperature range 5–50 C. Meas Sci Technol 16:1506

    CAS  Article  Google Scholar 

  33. 33.

    Atkins P, Overton T (2010) Shriver and Atkins’ inorganic chemistry. Oxford University Press, USA

    Google Scholar 

  34. 34.

    Ogden MI, Beer PD (2011) Water & O-donor ligands. Encycl Inorg Bioinorg Chem. https://doi.org/10.1002/9781119951438.eibc0238

    Article  Google Scholar 

  35. 35.

    Pauling L (1988) General chemistry. Courier Corporation

  36. 36.

    Irish DE, Mccarroll B, Young TF (1963) Raman study of zinc chloride solutions. J Chem Phys 39:3436–3444. https://doi.org/10.1063/1.1734212

    CAS  Article  Google Scholar 

  37. 37.

    Kesavan S, Mozhi TA, Wilde BE (1989) Potential-pH diagrams for the Fe-Cl-H2O system at 25 to 150°C. Corrosion 45:213–215

    CAS  Article  Google Scholar 

  38. 38.

    Macleod I, North N (1980) 350 years of marine corrosion in Western Australia. Corros Aust 5:11–15

    CAS  Google Scholar 

  39. 39.

    Vazquez-Arenas J, Sosa-Rodriguez F, Lazaro I, Cruz R (2012) Thermodynamic and electrochemistry analysis of the zinc electrodeposition in NH4Cl–NH3 electrolytes on Ti, glassy carbon and 316L stainless steel. Electrochim Acta 79:109–116. https://doi.org/10.1016/j.electacta.2012.06.091

    CAS  Article  Google Scholar 

  40. 40.

    Powell KJ, Brown PL, Byrne RH et al (2009) Chemical speciation of environmentally significant metals with inorganic ligands. Part 4: the Pb2+ OH-, Cl-, and systems (IUPAC Technical Report). Pure Appl Chem 12:2425–2476

    Article  Google Scholar 

  41. 41.

    Moghaddam J, Sarraf-Mamoory R, Yamini Y, Abdollahy M (2005) Determination of the optimum conditions for the leaching of nonsulfide zinc ores (high-SiO2) in ammonium carbonate media. Ind Eng Chem Res 44:8952–8958

    CAS  Article  Google Scholar 

  42. 42.

    Radmehr V, Koleini SMJ, Khalesi MR, Mohammadi MRT (2013) Ammonia Leaching: a new approach of copper industry in hydrometallurgical processes. J Inst Eng Ser D 94:95–104

    Article  Google Scholar 

  43. 43.

    Perrin DD (1959) Spectrophotometric determination of iron as ferric acetate complex. Anal Chem 31:1181–1182

    CAS  Article  Google Scholar 

  44. 44.

    Everaert M, Lemmens V, Atia TA, Spooren J (2020) Sulfidic mine tailings and marl waste rock as compatible resources in a microwave-assisted roasting process. J Clean Prod 274:1–28. https://doi.org/10.1016/j.jclepro.2020.122628

    CAS  Article  Google Scholar 

  45. 45.

    Bjerrum J, Sillén LG, Schwarzenbach GK, Berecki-Biedermann C (1958) Stability constants of metal-ion complexes, with solubility products of inorganic substances 2: inorganic ligands, 2nd edn. Chemical Society, London

    Google Scholar 

  46. 46.

    Marion GM, Catling DC, Kargel JS (2003) Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars. Geochim Cosmochim Acta 67:4251–4266. https://doi.org/10.1016/S0016-7037(03)00372-7

    CAS  Article  Google Scholar 

  47. 47.

    Capello C, Fischer U, Hungerbühler K (2007) What is a green solvent? a comprehensive framework for the environmental assessment of solvents. Green Chem 9:927–993. https://doi.org/10.1039/b617536h

    CAS  Article  Google Scholar 

  48. 48.

    Prat D, Wells A, Hayler J et al (2015) CHEM21 selection guide of classical- and less classical-solvents. Green Chem 18:288–296. https://doi.org/10.1039/c5gc01008j

    Article  Google Scholar 

Download references


The authors would like to thank Wendy Wouters for the microwave-assisted roasting and the extraction experiment with the roasted tailing, Myrjam Mertens for the XRD analysis, Raymond Kemps for the SEM-EDX analysis, and Warre Van Dun for the assistance with the ICP-OES measurements. Nor Kamariah is thankful for the funding from the European Union’s EU Framework Program for Research and Innovation Horizon 2020 under Grant Agreement No 812580 (MSCA-ETN SULTAN). This publication reflects only the authors' view, exempting the Commission from any liability.

Author information



Corresponding author

Correspondence to Maarten Everaert.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The contributing editor for this article was Atsushi Shibayama.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 724 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Everaert, M., Guerrero, F., Kamariah, N. et al. Fundamental Insights in Alcoholic Ammoniacal Systems for Selective Solvometallurgical Extraction of Cu, Zn, and Pb from Tailings. J. Sustain. Metall. (2021). https://doi.org/10.1007/s40831-021-00382-y

Download citation


  • Ammoniacal leaching
  • Alcoholic extraction systems
  • Selective metal leaching
  • Sulfidic tailings
  • Solvometallurgy