Skip to main content

Advertisement

Log in

A Review on Recycling and Reutilization of Blast Furnace Dust as a Secondary Resource

  • Review Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

A large amount of dust is formed as one of the primary by-products during the blast furnace ironmaking process. Besides iron and carbon, it contains a variety of valuable metals such as zinc, lead, and indium widely applied in many industry fields. However, it is difficult to recycle and reutilize blast furnace dust (BFD) due to complex composition, fine particle size, and strong hydrophobic property. The extensive utilization of BFD wastes precious metal resources and decreases the additional value of recovery. Environment-oriented technologies have raised great attention in the recycling of precious metals. This article presents an overview of various technologies and the prospect of utilization on the recovery of BFD. The source, composition, and characteristics of BFD, as well as the recycling technologies within the blast furnace system are analyzed. Fundamental studies regarding pyrometallurgy and hydrometallurgy for recycling valuable metals from BFD such as direct reduction, leaching, and extraction, as well as its advantages and challenges, are also discussed. There is also great potential for BFD in other fields, including flocculants, cement raw materials, and adsorbents. The diverse chemical properties of BFD make it a contender for selective separation and adsorption in water pollution treatment. The development of pyrometallurgy technologies is mainly to realize its green and clean production. The innovative technologies in hydrometallurgy mainly aim to improve the leaching and extraction efficiency of high-valued metals. The combination of pyrometallurgy and hydrometallurgy technologies achieves the environment-friendly and sustainable recycling for precious metals with a higher recovery rate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Worldsteel Association (2021) Global crude steel output decreases by 0.9% in 2020. https://www.worldsteel.org/media-centre/press-releases/2021/Global-crude-steel-output-decreases-by-0.9--in-2020.html . Accessed 26 Jan 2021

  2. Xiao X, Zhang SF, Zhang H, Qiu GB, Xin YT, Wang JT (2020) Extraction of rare and high-valued metals from blast furnace dust. In: Azimi G, Forsberg K, Ouchi T, Kim H, Alam S, Baba AA (eds) Rare Metal Technology. Springer, Cham, pp 305–315

    Google Scholar 

  3. Smith MP (2017) Blast furnace ironmaking-a view on future developments. Procedia Eng 174:19–28

    Article  Google Scholar 

  4. Baidya R, Ghosh SK, Parlikar UV (2019) Blast furnace flue dust co-processing in cement kiln-a pilot study. Waste Manage Res 37(3):261–267

    Article  CAS  Google Scholar 

  5. Liu XL, Liu ZJ, Zhang JL, Xing XD (2019) Recovery of iron and zinc from blast furnace dust using iron-bath reduction. High Temp Mater Process 38:767–772. https://doi.org/10.1515/htmp-2019-0023

    Article  CAS  Google Scholar 

  6. Zhou DD, Cheng SS, Wang YS, Jiang X (2017) The production of large blast furnaces during 2016 and future development of ironmaking in China. Ironmak Steelmak 44(10):714–720. https://doi.org/10.1080/03019233.2017.1339398

    Article  CAS  Google Scholar 

  7. Alfantazi AM, Moskalyk RR (2003) Processing of indium: a review. Miner Eng 16(8):687–694. https://doi.org/10.1016/S0892-6875(03)00168-7

    Article  CAS  Google Scholar 

  8. Roosendael VS, Regadio M, Roosen J, Binnemans K (2019) Selective recovery of indium from iron-rich solutions using an aliquat 336 iodide supported ionic liquid phase (SILP). Sep Purif Technol 212:843–853. https://doi.org/10.1016/j.seppur.2018.11.092

    Article  CAS  Google Scholar 

  9. Lupi C, Pilone D (2014) In(III) hydrometallurgical recovery from secondary materials by solvent extraction. J Environ Chem Eng 2(1):100–104. https://doi.org/10.1016/j.jece.2013.12.004

    Article  CAS  Google Scholar 

  10. Ding YJ, Zhang SE, Liu B, Zheng H, Chang C-c, Ekberg C (2019) Recovery of precious metals from electronic waste and spent catalysts: a review. Resour Conserv Recy 141:284–298. https://doi.org/10.1016/j.resconrec.2018.10.041

    Article  Google Scholar 

  11. Tsakiridis PE, Oustadakis P, Moustakas K, Agatzini SL (2016) Cyclones and fabric filters dusts from secondary aluminium flue gases: a characterization and leaching study. Int J Environ Sci Te 13(7):1793–1802. https://doi.org/10.1007/s13762-016-1014-3

    Article  CAS  Google Scholar 

  12. Zeydabadi BA, Mowla D, Shariat MH, Kalajahi JF (1997) Zinc recovery from blast furnace flue dust. Hydrometallurgy 47(1):113–125. https://doi.org/10.1016/S0304-386X(97)00039-X

    Article  Google Scholar 

  13. Ravnik V, Dermelj M, Kosta L (1974) Highly selective diethyldithiocarbamate extraction system in activation-analysis of copper, indium, manganese and zinc-application to analysis of standard reference materials. J Radioanal Chem 20(2):443–453. https://doi.org/10.1007/Bf02514291

    Article  CAS  Google Scholar 

  14. Wang Z, Sohn I (2019) A review on reclamation and reutilization of ironmaking and steelmaking slags. J Sustain Metall 5(1):127–140. https://doi.org/10.1007/s40831-018-0201-5

    Article  Google Scholar 

  15. Walker RD (1986) Modern ironmaking methods. The Institute of Metals, London

    Google Scholar 

  16. Fisher LV, Barron AR (2019) The recycling and reuse of steelmaking slags-a review. Resour Conserv Recy 146:244–255. https://doi.org/10.1016/j.resconrec.2019.03.010

    Article  Google Scholar 

  17. Zhao B (2019) Study on application of blast furnace gas bag dedusting technology (Master's dissertation, North China University of Science and Technology)

  18. Wang SK (2009) Recovery and recycling of non-ferrous metal from the ash gas. Renew Res 10:48–50

    Google Scholar 

  19. Zhao D, Zhang JL, Wang GW, Conejo AN, Xu RS, Wang HY, Zhong JB (2016) Structure characteristics and combustibility of carbonaceous materials from blast furnace flue dust. Appl Therm Eng 108:1168–1177. https://doi.org/10.1016/j.applthermaleng.2016.08.020

    Article  CAS  Google Scholar 

  20. Liu BG, Peng JH, Zhang LB, Zhang SM, Mao JL (2007) Present condition of research on recycling utilization of blast furnace sludge or flue dust. Express Inf Min Ind 5:14–19

    Google Scholar 

  21. Zhong YW, Qiu XL, Gao JT, Guo ZC (2017) Structural characterization of carbon in blast furnace flue dust and its reactivity in combustion. Energ Fuel 31(8):8415–8422

    Article  CAS  Google Scholar 

  22. Hitchen A, Zechanowitsch G (1978) Determination of zinc in blast-furnace flue dusts. Talanta 25(11–12):673–675

    Article  CAS  Google Scholar 

  23. Verena T, Mallow O, Thaler C, Schenk J, Rechberger H, Fellner J (2015) Behavior of chromium, nickel, lead, zinc, cadmium, and mercury in the blast furnace-a critical reviewof literature data and plant investigations. Ind Eng Chem Res 54(47):11759–11771. https://doi.org/10.1021/acs.iecr.5b03442

    Article  CAS  Google Scholar 

  24. Vereš J, Jakabský Š, Lovás M (2011) Zinc recovery from iron and steel making wastes by conventional and microwave assisted leaching. Acta Montan Slovaca 16(3):185–191

    Google Scholar 

  25. Weise WH (1956) Blast furnace flue dust treatment facilities. Sewage Ind Wastes 28(11):1398–1402

    Google Scholar 

  26. Mitra AN, Rao VVK, Mukherjee T (1977) Origin of blast-furnace flue dust. T Indian I Metals 30(4):264

    Google Scholar 

  27. Ashrit SS, Sarkar S, Singh R, Yadav SZ, Chatti RV (2020) Characterization of blast furnace flue dust-a multi analytical techniques approach. Metall Res Technol 117(6):1–8. https://doi.org/10.1051/metal/2020059

    Article  CAS  Google Scholar 

  28. Ashrit SS, Chatti RV, Sarkar S (2019) Identification of the carbon source in blast furnace flue dust through characterisation and statistical analysis. Int J Environ An Ch. https://doi.org/10.1080/03067319.2019.1682142

    Article  Google Scholar 

  29. Cutler FG, Haswell AB (1933) Method of recovering blast furnace flue dust. US Patent 1930010

  30. Mansfeldt T, Dohrmann R (2001) Identification of a crystalline cyanide-containing compound in blast furnace sludge deposits. J Environ Qual 30(6):1927–1932. https://doi.org/10.2134/jeq2001.1927

    Article  CAS  Google Scholar 

  31. Foeldi C, Dohrmann R, Mansfeldt T (2014) Mercury in dumped blast furnace sludge. Chemosphere 99:248–253. https://doi.org/10.1016/j.chemosphere.2013.11.007

    Article  CAS  Google Scholar 

  32. Duan DP, Han HL, Chen SM (2012) Efficient and comprehensive utilization of blast furnace dust in metalized pelletizing process. Metal Int 17(4):66–69

    CAS  Google Scholar 

  33. Morcos ST, Betensley A (2003) Pulmonary necrobiotic nodule (PNN) related to chronic exposure to blast furnace flue dust. Chest 124(4):278s–278s. https://doi.org/10.1378/chest.124.4_MeetingAbstracts.278S

    Article  Google Scholar 

  34. Gudenau HW, Babich A, Denecke H, Yaroshevskii S, Kochura V (1999) Injection of flue dust and pulverized coal into blast furnaces. Stahl Eisen 119(12):81–87

    CAS  Google Scholar 

  35. Yehia A, Elrehiem FH (2005) Recovery and utilization of iron and carbon values from blast furnace flue dust. Eur J Miner Process 114(4):207–211

    Google Scholar 

  36. Mao L, Gao Q, Yan JB, Xu LJ, Cui ZW, Liu QC, Chen CY (2009) Leaching indium from blast furnace flue dust with sulphuric acid. China Nonferr Met 1:68–70

    Google Scholar 

  37. Lanzerstorfer C, Bamberger-Strassmayr B, Pilz K (2015) Recycling of blast furnace dust in the iron ore sintering process: investigation of coke breeze substitution and the influence on off-gas emissions. ISIJ Int 55(4):758–764. https://doi.org/10.2355/isijinternational.55.758

    Article  CAS  Google Scholar 

  38. Liu Y, Ma LK, Zhao HB (2014) The process of removal zinc from the blast furnace dust of Bx steel. Bengang Technology 5:12-16+39

    Google Scholar 

  39. Li L, Deng YC, Wei YY, Gong M (2014) Research situation of the blast furnace gas ash comprehensive utilization. Hunan Nonferr Metal 30(5):25–29

    Google Scholar 

  40. Wagner A, Pixius R, Schon F (1978) Recovery of zinc from iron-making or steel-refining furnace dust. US patent 4069315

  41. Wang SK, Wei XY, Xu DD, Li S, Zong ZM (2020) Investigation on the structural characteristics of the residues from extraction and oxidation of a sawdust. Fuel 273:1–6. https://doi.org/10.1016/j.fuel.2020.117091

    Article  CAS  Google Scholar 

  42. Horii K, Tsutsumi N, Kitano Y, Kato T (2012) Processing and reusing technologies for steelmaking slag. Nippon Steel Technical Report

  43. Das B, Prakash S, Reddy PSR, Misra VN (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recy 50(1):40–57. https://doi.org/10.1016/j.resconrec.2006.05.008

    Article  Google Scholar 

  44. Xu BH, Wang EJ, Yang JW (2007) Research on recovery of iron and carbon from blast furnace gas ash. Conserv Util Miner Res 3:51–54

    Google Scholar 

  45. Hu XH, Li YH (2004) Research on comprehensive utilization of blast furnace gas mud. Express Inf Min Ind 8:14–16

    Google Scholar 

  46. Chen SW, Chen T, Li J (2017) Study on the separation experiments and kinetics of zinc and iron in blast furnace gas ash. Sinter Pellet 42(5):39–43

    Google Scholar 

  47. Reddy PSR, Biswal SK, Das B, Mohapatra BK (1996) Recovery of iron and carbon values from iron blast furnace flue dust by beneficiation techniques. Powder Handl 8(2):139–142

    CAS  Google Scholar 

  48. Yuan S, Zhou W, Han Y, Li Y (2020) Efficient enrichment of iron concentrate from iron tailings via suspension magnetization roasting and magnetic separation. J Mater Cycles Waste Manage 22(4):1152–1162

    Article  CAS  Google Scholar 

  49. Filatov SV, Listopadov VS, Sorokin AY, Myasoedov SV, Titov VN, Zagainov SA (2020) Technology of blast-furnace smelting of iron using pulverized coal at the NLMK. Metallurgist 64(5–6):381–387. https://doi.org/10.1007/s11015-020-01006-8

    Article  CAS  Google Scholar 

  50. Zou C (2014) Mechanism of intensified combustion of PCI coal by catalysts and its fundamental research for application in blast furnace (Doctoral dissertation, Chongqing University)

  51. Sundqvistökvist L (2004) Co-injection of basic fluxes or BF flue dust with PC into a BF charged with 100% pellets: effects on slag formation and coal combustion. Luleå Tekniska Universitet http://epubl.ltu.se/1402-1544/2004/31

  52. Jia GL, Zhang BH (2007) Study on co-injection of bf flue dust and pulverized coal into blast furnace. China Metall 5:20–22

    Google Scholar 

  53. Liu DJ, Bo H, Ma GY (2012) Study on method for recycling dedusting ash produced in ironmaking. Angang Technol 2:9–14

    Google Scholar 

  54. Tang Q (2018) Experimental study on extraction process of valuable elements in RHF second dust (Master's dissertation, Chongqing University)

  55. Meyer G, Vopel KH, Janssen W (1976) Investigations of utilization of dusts and sludges from waste-gas cleaning systems of blast-furnaces and bop steelmaking plants in rotary kiln. Stahl Eisen 96(24):1228–1233

    CAS  Google Scholar 

  56. Meyer K, Heitmann G, Janke W (1966) The SL/RN process for production of metallized burden. JOM 18(6):748–752. https://doi.org/10.1007/BF03378467

    Article  CAS  Google Scholar 

  57. Liu JH, Wang ZR, Luo BH, Ma JF (2008) Decontamination treatment and comprehensive utilization of zinc materials with waelz technology in production practice. Hunan Nonferr Met 24(6):16-18+56

    Google Scholar 

  58. Pang JM, Guo PM, Zhao P (2013) Practice of new technology of treating blast furnace dust containing zinc and lead with rotary kiln. China Nonferr Metall 42(3):19–24

    CAS  Google Scholar 

  59. Ren SL, Liang XP, Tu ZB, Tang Q, Yang XG, Wang Y (2019) Experimental study on the treatment of zinc-containing rotary hearth furnace dust (Master's dissertation, Chongqing University)

  60. Wang SK (2010) Industrial experiments of reduced fuming treatment of blast furnace dust in a rotary kiln. Res Iron Steel 38(4):39–42

    CAS  Google Scholar 

  61. Oda H, Ibaraki T, Abe Y (2006) Dust recycling system by the rotary hearth furnace. Nippon Steel Tech Rep 94:147–152

    Google Scholar 

  62. Li N, Wang F, Zhang W, Zhang S, Chong FZ (2021) Effects of carbon-containing pellet shapes on its direct reduction process: a numerical study. T Indian I Metals 74(1):21–31

    Article  CAS  Google Scholar 

  63. Singh PK, Katiyar PK, Kumar AL, Chaithnya B, Pramanik S (2014) Effect of sintering performance of the utilization of blast furnace solid wastes as pellets. Procedia Mater Sci 5:2468–2477. https://doi.org/10.1016/j.mspro.2014.07.498

    Article  CAS  Google Scholar 

  64. Li R (2012) Introduction of pyrometallurgy treatment for iron-bearing sludge at steel works. Shanxi Metall 35(1):1-3+9

    Google Scholar 

  65. Yamada S, Itaya H, Hara Y (1998) Simultaneous recovery of zinc and iron from electric arc furnace dust with a coke-packed bed smelting-reduction process. Iron Steel Eng 75(8):64–67

    CAS  Google Scholar 

  66. Takamoto Y, Kunitomo A, Otsuka G, Ikeda DJH (1999) Removal of Zinc from Blast Furnace Sludge with Circulating Fluidized Bed. Paper presented at the material とプロセス: Japan iron objects speech on steel association. Current Advances in Materials & Processes: Report

  67. Guo ZY, Zhang JL, Jiao KX, Gao TL, Zong YB, Zhang J (2021) Research on low-carbon smelting technology of blast furnace-optimized design of blast furnace. Ironmak Steelmak 1:1–8. https://doi.org/10.1016/j.fuel.2020.117091

    Article  CAS  Google Scholar 

  68. Peng KY, Yun Z, Liaosha LI, Wang SJ, Wang HC, Dong YC (2005) The present situation and development of comprehensive utilization of zinc-borne dust in steel and iron plants. China Res Comp Util 6:8–12

    Google Scholar 

  69. Shi Y, Jin YL, Li BC (2019) Treatment process of zinc soild waste. Hebei Metall S1:77–79. https://doi.org/10.13630/j.cnki.13-1172.2019.S119

    Article  Google Scholar 

  70. Kong Y, Liu W, Qin WQ, Zheng YX, Hang JW (2013) Recovery of zinc from zinc-bearing blast furnace dust by sulfidation roasting. Conserv Util Miner Res 2:34–38

    Google Scholar 

  71. Deng YC, Jia SQ, Wu SL, Jiang YJ (2015) Removal of the harmful elements and iron recovery from the blast furnace gas ash by chloridizing roasting. Iron Steel Vanadium Titanium 36(6):51–56

    CAS  Google Scholar 

  72. Zhu DQ, Chen D, Pan J, Zheng GL (2011) Chlorination behaviors of zinc phases by calcium chloride in high temperature oxidizing-chloridizing roasting. Iron Steel Inst Japan 51(11):1773–1777

    Article  CAS  Google Scholar 

  73. Yang S, Zhao M, Li J, Jie F, Liu Q (2017) Removal of zinc and lead from blast furnace dust in a fluidized-bed roaster. J Sustain Metall 3(3):1–9

    Article  Google Scholar 

  74. Long HL, Chen KH, Xu CX, Li HY, Xie HM, Yin SH, Wang YM, Zhang LB, Li SW, Ma AY (2021) Efficient recycling of silver and copper from sintering dust by chlorination roasting process. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-05291-y

    Article  Google Scholar 

  75. Wang SK (2006) Indium metallurgy. Metallurgical Industry Press, Beijing

    Google Scholar 

  76. Habashi F (2001) Arsenic, antimony, and bismuth production. In: Habashi F (ed) encyclopedia of materials: Science and Technology, 2nd edn. Elsevier, Amsterdam, pp 332–336

    Chapter  Google Scholar 

  77. Fortes MCB, Benedetto JS (1998) Separation of indium and iron by solvent extraction. Miner Eng 11(5):447–451. https://doi.org/10.1016/S0892-6875(98)00023-5

    Article  CAS  Google Scholar 

  78. Jia YZ (2018) Investigations on the fundamental characteristics and efficient dezincification of Zn-bearing blast furnace dust. (Master's dissertation, Taiyuan University of Technology)

  79. Xia DK, Pickles CA (1999) Caustic roasting and leaching of electric arc furnace dust. Can Metall Q 38(3):175–186. https://doi.org/10.1016/S0008-4433(99)00014-2

    Article  CAS  Google Scholar 

  80. Zhang BP, Yang F (2014) Preparation of grade zinc oxide from blast furnace dust by using ammonia process. J Wuhan Univ Technol 37(2):125–129

    Google Scholar 

  81. Saleh HI, Hassan KM (2004) Extraction of zinc from blast-furnace dust using ammonium sulfate. J Chem Technol Biotechnol 79(4):397–402. https://doi.org/10.1002/jctb.996

    Article  CAS  Google Scholar 

  82. Zhang JX, Zou X, Niu FS (2016) Leaching zinc from blast furnace flue dust from hebei by sulfuric acid. Metal Mine 482:194–196

    Google Scholar 

  83. Yang DB, Chen X (2012) Experimental research on comprehensive recovery of carbon, iron and zinc from blast furnace dust. J Wuhan Univ Technol 35(5):352–355

    CAS  Google Scholar 

  84. Luo WQ (2012) Study on preparing active zinc oxide using zinc of blast furnace sludge. Chin J Environ Eng 6(1):317–321

    CAS  Google Scholar 

  85. Wu CC (2002) Enrichment and comprehensive recovery of germanium and indium in smelting process of the closed blast furnace. J Guangdong Nonferr Met S1:39–43

    Google Scholar 

  86. Wang SK, Wang HY (2007) Method for extracting metal indium, zinc and bismuth from blast furnace gas ash. CN Patent 101078053

  87. Hu FM, Song KW, Shi DY, Zhang C, Zhang XL, Liu DW (2015) Research and progress of processing technology of blast furnace dust. MUMR 6:11–15

    Google Scholar 

  88. Zhang YL (2015) Preparation and characterization of coagulant using blast furnace dust and monosodium glutamate wastewater (Doctoral dissertation, Shandong University)

  89. Mohamed AYA, Siggins A, Healy MG, HUallachain DO, Fenton O, Tuohy P, (2020) Appraisal and ranking of poly-aluminium chloride, ferric chloride and alum for the treatment of dairy soiled water. J Environ Manage https://doi.org/10.1016/j.jenvman.2020.110567

    Article  Google Scholar 

  90. Li SP, Zhang YL, Luan FB, Zhang JD (2005) Preparing composite inorganic polymer flocculant-pafc by reusing steel mill waste. Environ Chem 24(2):168–170

    CAS  Google Scholar 

  91. Zhang Y, Li S, Wang X, Li X (2015) Coagulation performance and mechanism of polyaluminum ferric chloride (PAFC) coagulant synthesized using blast furnace dust. Sep Purif Technol 154:345–350

    Article  CAS  Google Scholar 

  92. López-Delgado A, Pérez C, López FA (1996) The influence of carbon content of blast furnace sludges and coke on the adsorption of lead ions from aqueous solution. Carbon 34(3):423–426. https://doi.org/10.1016/0008-6223(96)87611-1

    Article  Google Scholar 

  93. López-Delgado A, Pérez C, López FA (1998) Sorption of heavy metals on blast furnace sludge. Water Res 32(4):989–996. https://doi.org/10.1016/S0043-1354(97)00304-7

    Article  Google Scholar 

  94. Li SP, Zhang QL, Jing FU, Wang ZX (2007) Preparation and performance study of filter media made by blast furnace dust for a biological aerated filter. J Shandong Univ 11:1–5

    CAS  Google Scholar 

  95. Kavouras P, Kehagias T, Tsilika I, Kaimakamis G, Chrissafis K, Kokkou S, Papadopoulos D, Karakostas T (2007) Glass-ceramic materials from electric arc furnace dust. J Hazard Mater 139(3):424–429. https://doi.org/10.1016/j.jhazmat.2006.02.043

    Article  CAS  Google Scholar 

  96. Yang G, Ye NQ, Huang Y (2002) A new material for wall-gas silt and pulverized fuel ash brick. J Guilin Inst Technol 22(3):304–306

    CAS  Google Scholar 

  97. Peng CH, Mu SG, Tang MT (2006) Mn-Zn ferrite co-precipitation powders made from steel plant dust. J Cent South Univ 37(1):31–35

    Google Scholar 

  98. Xiong HW, Dai YD (2012) Significance for resource comprehensive utilization of rotary hearth furnace direct reduction in steel industry and analysis of its developing prospects. Energy China 34(2):5-7+13

    Google Scholar 

  99. Gupta B, Deep A, Malik P (2004) Liquid-liquid extraction and recovery of indium using Cyanex 923. Anal Chim Acta 513(2):463–471. https://doi.org/10.1016/j.aca.2004.02.036

    Article  CAS  Google Scholar 

  100. Zhang F, Wei C, Deng Z, Li X, Li C, Li M (2016) Reductive leaching of indium-bearing zinc residue in sulfuric acid using sphalerite concentrate as reductant. Hydrometallurgy 161:102–106. https://doi.org/10.1016/j.hydromet.2016.01.029

    Article  CAS  Google Scholar 

  101. Le T, Xiao BQ, Ju SH, Peng JH, Jiang F (2019) Separation of indium from impurities in T-type microreactor with D2EHPA. Hydrometallurgy 183:79–86. https://doi.org/10.1016/j.hydromet.2018.11.016

    Article  CAS  Google Scholar 

  102. Zhao J (2018) Process analysis of resource utilization on zinc-borne dust and sludge in iron and steel plant. World Nonferr Metal 15:272–274

    Google Scholar 

  103. Wang YL, Yang YQ, Li GL, Duan ZK, Liu WY (2007) Research on zinc and bismuth recovery from blast furnace sludge. Inorg Chem Ind 8:42–44

    CAS  Google Scholar 

  104. Vereš J, Lovás M, Jakabsky Š, Epelák V, Hredzák S (2012) Characterization of blast furnace sludge and removal of zinc by microwave assisted extraction. Hydrometallurgy 129–130:67–73. https://doi.org/10.1016/j.hydromet.2012.09.008

    Article  CAS  Google Scholar 

  105. Orhan G (2005) Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium. Hydrometallurgy 78(3):236–245. https://doi.org/10.1016/j.hydromet.2005.03.002

    Article  CAS  Google Scholar 

  106. Xia DK, Picklesi CA (2000) Microwave caustic leaching of electric arc furnace dust. Miner Eng 13(1):79–94. https://doi.org/10.1016/S0892-6875(99)00151-X

    Article  CAS  Google Scholar 

  107. Ma AY, Zhang LB, Peng JH, Zheng XM, Li SW, Yang K, Chen WH (2016) Extraction of zinc from blast furnace dust in ammonia leaching system. Green Process Synth 5(1):23–30

    Article  CAS  Google Scholar 

  108. Zhu RS, Liu FL, Yi TF (2017) A study on extraction of zinc in ammonia leaching solution of blast furnace gas ashes. Anhui Metall 2:1–5

    Google Scholar 

  109. Xu G (2015) Applied basic research on recycling of blast furnace dust. (Doctoral dissertation, University of Science and Technology)

  110. Binnemans K, Jones PT, Fernandez AM, Torres VM (2020) Hydrometallurgical processes for the recovery of metals from steel industry by-products: a critical review. J Sustain Metall 6(4):505–540. https://doi.org/10.1007/s40831-020-00306-2

    Article  Google Scholar 

  111. Tian QH, Xin YT, Wang HL, Guo XY (2015) Research status on application of clean oxidants in oxidizing leaching of metals in hydrometallurgy. Hydrometall China 34(3):167–172

    CAS  Google Scholar 

  112. Li XB, Deng ZG, Li CX, Wei C, Li MT, Fan G, Rong H (2015) Direct solvent extraction of indium from a zinc residue reductive leach solution by D2EHPA. Hydrometallurgy 156:1–5. https://doi.org/10.1016/j.hydromet.2015.05.003

    Article  CAS  Google Scholar 

  113. Zhang Y, Jin B, Ma B, Feng X (2017) Separation of indium from lead smelting hazardous dust via leaching and solvent extraction. J Environ Chem Eng 5(3):2182–2188. https://doi.org/10.1016/j.jece.2017.04.034

    Article  CAS  Google Scholar 

  114. Irrgang N, Monneron-Enaud B, Mockel R, Schlomann M, Hock M (2021) Economic feasibility of the co-production of indium from zinc sulphide using bioleaching extraction in Germany. Hydrometallurgy https://doi.org/10.1016/j.hydromet.2021.105566

    Article  Google Scholar 

  115. Mao L, Wan J, Xu LJ, Yan JB, Cui ZW, Chen CY, Liu QC (2009) Recovery of indium from acid leachate of blast furnace dust with emulsified liquid membrane. Nonferr Metal 4:23–25

    Google Scholar 

  116. Zurner P, Frisch G (2019) Leaching and selective extraction of indium and tin from zinc flue dust using an oxalic acid-based deep eutectic solvent. Acs Sustain Chem Eng 7(5):5300–5308. https://doi.org/10.1021/acssuschemeng.8b06331

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Project No. 51774061 & 52074055) and Chongqing Talent program (Project No. CQYC201905039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengfu Zhang or Farooq Sher.

Additional information

The contributing editor for this article was Zhi Sun.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Zhang, S., Sher, F. et al. A Review on Recycling and Reutilization of Blast Furnace Dust as a Secondary Resource. J. Sustain. Metall. 7, 340–357 (2021). https://doi.org/10.1007/s40831-021-00377-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00377-9

Keywords

Navigation