Effect of Slag Chemistry on Plasma Production of Ferromanganese from Alumina-Rich Ferruginous-Type Manganese Ore

Abstract

The significant fraction of manganese ores available across the globe is ferruginous with high gangue content. About 30% of these types of ores occur as fines (< 1 mm) and are dumped at the mines site, considering it as waste. Different methods have been tried to utilize these ores by 5–15% in the charge mix of submerged arc furnace by briquetting in roller press or by extrusion. A high amount of dust generation during charging limited its use. In this research work, a 30 kW DC extended arc plasma reactor is employed to extract FeMn from such a lean grade ore without performing any agglomeration. Flux is added targeting two different slag systems, CaO–Al2O3–SiO2 (CAS) and CaO–Al2O3–MgO–SiO2 (CAMS), to optimize the working temperature. FeMn20 alloy with a maximum manganese recovery of about 80% is achieved by following discard slag practice. The effect of basicity ratios on alloy yield and Mn recovery is studied; CaO/SiO2 ratio higher than 2.5 in charge composition shows a negative effect on Mn recovery. In the CAS system, less slag is generated than the charges adjusted to the CAMS system. However, in the CAMS system, the energy consumption is much lower than in the CAS system. The produced metal and slag are characterized by phase, composition, and microstructural analyses.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Seetharaman S (2014) Treatise on process metallurgy. Elsevier, Oxford. https://doi.org/10.1016/C2010-0-66691-0

    Book  Google Scholar 

  2. 2.

    Gasik MM (2013) Handbook of ferroalloys. Elsevier, Oxford. https://doi.org/10.1016/C2011-0-04204-7

    Book  Google Scholar 

  3. 3.

    Samuratov Ye, Baisanov AMT (2010) Complex processing of iron-manganese ore of central kazakhstan. In: Vartiainen A (ed) The twelfth international ferroalloys congress. Outotec Oyj, Finland, pp 517–520

    Google Scholar 

  4. 4.

    Eissa M, Ghali S, Ahmed A, El-Faramawy H (2012) Optimum condition for smelting high carbon ferromanganese. Ironmak Steelmak 39:419–430. https://doi.org/10.1179/1743281211y.0000000062

    CAS  Article  Google Scholar 

  5. 5.

    Eissa M, El-Faramawy H, Ahmed A et al (2012) Parameters affecting the production of high carbon ferromanganese in closed submerged arc furnace. J Miner Mater Charact Eng 11:1–20. https://doi.org/10.4236/jmmce.2012.111001

    Article  Google Scholar 

  6. 6.

    Tripathy SK, Banerjee PK, Suresh N (2015) Effect of desliming on the magnetic separation of low-grade ferruginous manganese ore. Int J Miner Metall Mater 22:661–673. https://doi.org/10.1007/s12613-015-1120-0

    CAS  Article  Google Scholar 

  7. 7.

    Singh V, Ghosh TK, Ramamurthy Y, Tathavadkar V (2011) Beneficiation and agglomeration process to utilize low-grade ferruginous manganese ore fines. Int J Miner Process 99:84–86. https://doi.org/10.1016/j.minpro.2011.03.003

    CAS  Article  Google Scholar 

  8. 8.

    Rao GV, Mohapatra BK, Tripathy AK (1998) Enrichment of the manganese content by wet high intensity magnetic separation from Chikla manganese ore, India. Magn Electr Sep 9:69–82. https://doi.org/10.1155/1998/45169

    CAS  Article  Google Scholar 

  9. 9.

    Mishra PP, Mohapatra BK, Mahanta K (2009) Upgradation of low-grade siliceous manganese ore from Bonai-Keonjhar Belt, Orissa, India. J Miner Mater Charact Eng 08:47–56. https://doi.org/10.4236/jmmce.2009.81005

    Article  Google Scholar 

  10. 10.

    Zhang X, Tan X, Yi Y et al (2017) Recovery of manganese ore tailings by high-gradient magnetic separation and hydrometallurgical method. JOM 69:2352–2357. https://doi.org/10.1007/s11837-017-2521-5

    CAS  Article  Google Scholar 

  11. 11.

    Wu Y, Shi B, Ge W et al (2015) Magnetic separation and magnetic properties of low-grade manganese carbonate ore. JOM 67:361–368. https://doi.org/10.1007/s11837-014-1212-8

    CAS  Article  Google Scholar 

  12. 12.

    Mpho M, Samson B, Ayo A (2013) Evaluation of reduction roasting and magnetic separation for upgrading Mn/Fe ratio of fine ferromanganese. Int J Min Sci Technol 23:537–541. https://doi.org/10.1016/j.ijmst.2013.07.012

    CAS  Article  Google Scholar 

  13. 13.

    Kivinen V, Krogerus H, Daavittila J (2010) Upgrading of Mn/Fe ratio of low-grade manganese ore for ferromanganese production. In: Proceedings of the 12th international ferroalloys congress: sustainable future, pp 467–476

  14. 14.

    Liu B, Zhang Y, Lu M et al (2019) Extraction and separation of manganese and iron from ferruginous manganese ores: a review. Miner Eng 131:286–303. https://doi.org/10.1016/j.mineng.2018.11.016

    CAS  Article  Google Scholar 

  15. 15.

    El-Geassy AA, Nasr MI, Yousef MA et al (2003) Behaviour of manganese oxides during magnetising reduction of Baharia iron ore by CO–CO 2 gas mixture. Ironmak Steelmak 27:117–122. https://doi.org/10.1179/030192300677417

    Article  Google Scholar 

  16. 16.

    Gao Y, Olivas-Martinez M, Sohn HY et al (2012) Upgrading of low-grade manganese ore by selective reduction of iron oxide and magnetic separation. Metall Mater Trans B 43:1465–1475. https://doi.org/10.1007/s11663-012-9731-6

    CAS  Article  Google Scholar 

  17. 17.

    Nurjaman F, Amarela S, Noegroho A et al (2017) Beneficiation of two different low-grade Indonesian manganese ores to improve the Mn/Fe ratio. AIP Conf Proc. https://doi.org/10.1063/1.4978094

    Article  Google Scholar 

  18. 18.

    Yi L, Huang Z, Jiang T et al (2017) Carbothermic reduction of ferruginous manganese ore for Mn/Fe beneficiation: morphology evolution and separation characteristic. Minerals. https://doi.org/10.3390/min7090167

    Article  Google Scholar 

  19. 19.

    Gao L, Liu Z, Chu M et al (2019) Upgrading of low-grade manganese ore based on reduction roasting and magnetic separation technique. Sep Sci Technol (Philadelphia) 54:195–206. https://doi.org/10.1080/01496395.2018.1504795

    CAS  Article  Google Scholar 

  20. 20.

    Rath SS, Tripathy SK, Rao DS, Biswal SK (2018) Characterization and reduction roasting studies of an iron rich manganese ore. Trans Indian Inst Met 71:861–872. https://doi.org/10.1007/s12666-017-1218-3

    CAS  Article  Google Scholar 

  21. 21.

    Samal SK, Mishra B, Mishra SC (2020) Carboaluminothermic production of ferrotitanium from ilmenite through thermal plasma. J Sustain Metall. https://doi.org/10.1007/s40831-020-00292-5

    Article  Google Scholar 

  22. 22.

    Cengizler H, Eric RH (1992) Thermodynamic activity of manganese oxide in ferromanganese slags, and the distribution of manganese between the metal and slag phases. Infacon 6:167–174

    Google Scholar 

  23. 23.

    Çardakli IS, SevInç N, Öztürk T (2011) Production of high carbon ferromanganese from a manganese ore located in Erzincan. Turk J Eng Environ Sci 35:31–38. https://doi.org/10.3906/muh-1009-6

    CAS  Article  Google Scholar 

  24. 24.

    Woo DH, Kang YB, Lee HG (2002) Thermodynamic study of MnO-SiO2-Al2O3 slag system: liquidus lines and activities of MnO at 1823 K. Metall Mater Trans B 33:915–920. https://doi.org/10.1007/s11663-002-0075-5

    Article  Google Scholar 

  25. 25.

    Yan Z, Lv X, Liang D et al (2017) Transition of blast furnace slag from silicates-based to aluminates-based: viscosity. Metall Mater Trans B 48:1092–1099. https://doi.org/10.1007/s11663-016-0676-z

    CAS  Article  Google Scholar 

  26. 26.

    Tang K, Olsen S (2007) The effect of alumina in ferromanganese slag. In: Innovations in the ferro alloy industry—Proceedings of the XI international conference on innovations in the ferro alloy industry, Infacon XI, pp 335–343

  27. 27.

    Sohn I, Min DJ (2012) A review of the relationship between viscosity and the structure of calcium-silicate-based slags in ironmaking. Steel Res Int 83:611–630. https://doi.org/10.1002/srin.201200040

    CAS  Article  Google Scholar 

  28. 28.

    Eom CH, Lee SH, Park JG et al (2016) Thermodynamic behavior of manganese oxide in lime-based manganese smelting slags. ISIJ Int 56:37–43. https://doi.org/10.2355/isijinternational.ISIJINT-2015-243

    CAS  Article  Google Scholar 

  29. 29.

    Insley H, Frechette VD (1955) Microscopy of ceramics and cements. Elsevier, New York. https://doi.org/10.1016/C2013-0-12053-3

    Book  Google Scholar 

  30. 30.

    Yang Q, Engström F, Björkman B, Adolfsson D (2009) Modification study of a steel slag to prevent the slag disintegration after metal recovery. In: 8th international conference on Molten slags, fluxes and salts—MOLTEN 2009

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. K. Samal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The contributing editor for this article was Mansoor Barati.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samal, S.K., Mishra, S., Mishra, B. et al. Effect of Slag Chemistry on Plasma Production of Ferromanganese from Alumina-Rich Ferruginous-Type Manganese Ore. J. Sustain. Metall. (2021). https://doi.org/10.1007/s40831-021-00376-w

Download citation

Keywords

  • Lean manganese ore
  • Thermal plasma
  • Ferromanganese
  • Mn recovery