Skip to main content
Log in

Removal of Cadmium, Zinc, and Manganese from Dilute Aqueous Solutions by Foam Separation

Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Cite this article

Abstract

As environmental regulations are becoming stricter, new techniques must be developed for the removal of trace concentrations of heavy metals from mineral processing effluents. Foam separation techniques are an interesting alternative to more conventional processes such as ion exchange because of their efficiency to treat dilute aqueous streams. In this paper, the simultaneous removal of Cd2+, Mn2+, and Zn2+ from dilute aqueous solutions was investigated by using sodium dodecyl sulfate as collector and triethylenetetramine as auxiliary ligand via a series of batch-mode flotation experiments. Experimental results showed that Cd2+, Mn2+, and Zn2+ can be completely removed in one step under the following conditions: pH 9.50, flotation time = 120 min, auxiliary concentration 0.1 mmol L−1, collector-to-metals molar ratio 2:1, ethanol concentration 0.5% (v/v), and a nitrogen gas flowrate set at 25 mL min−1. An excess in auxiliary ligand concentration yielded to low removal efficiency. The modeled speciation of the examined system suggested that the metals are separated from the bulk solution to the foam phase via a combination of ion flotation and precipitate flotation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Chen T, Yan B, Lei C, Xiao X (2014) Pollution control and metal resource recovery for acid mine drainage. Hydrometallurgy 147–148:112–119. https://doi.org/10.1016/j.hydromet.2014.04.024

    Article  CAS  Google Scholar 

  2. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4:37–59. https://doi.org/10.1002/cben.201600010

    Article  Google Scholar 

  3. Azevedo A, Oliveira HA, Rubio J (2018) Treatment and water reuse of lead-zinc sulphide ore mill wastewaters by high rate dissolved air flotation. Miner Eng 127:114–121. https://doi.org/10.1016/j.mineng.2018.07.011

    Article  CAS  Google Scholar 

  4. Somasundaran P (1975) Separation using foaming techniques. Sep Sci 10:93–109. https://doi.org/10.1080/00372367508057071

    Article  CAS  Google Scholar 

  5. You-Cai Z, Zouboulis A, Matis K (1996) Flotation of molybdate oxyanions in dilute solutions. Part 1 Selective separation from arsenate. Hydrometallurgy 43:143–154. https://doi.org/10.1016/0304-386X(96)00018-7

    Article  Google Scholar 

  6. Rubio J, Souza M, Smith R (2002) Overview of flotation as a wastewater treatment technique. Miner Eng 15:139–155. https://doi.org/10.1016/S0892-6875(01)00216-3

    Article  CAS  Google Scholar 

  7. Zamboulis D, Peleka EN, Lazaridis NK, Matis KA (2011) Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. J Chem Technol Biotechnol 86:335–344. https://doi.org/10.1002/jctb.2552

    Article  CAS  Google Scholar 

  8. Pinfold T (1972) Ion flotation. In: Lemlich R (ed) Adsorptive bubble separation techniques. Academic Press, New York, pp 53–73

    Chapter  Google Scholar 

  9. Grieves RB (1975) Foam separations: a review. Chem Eng J 9:93–106. https://doi.org/10.1016/0300-9467(75)80001-3

    Article  CAS  Google Scholar 

  10. Sebba F (1959) Concentration by ion flotation. Nature 184:1062–1063. https://doi.org/10.1038/1841062a0

    Article  CAS  Google Scholar 

  11. Matis KA, Mavros P (1991) Recovery of metals by ion flotation from dilute aqueous solutions. Sep Purif Rev 20:1–48. https://doi.org/10.1080/03602549108021407

    Article  CAS  Google Scholar 

  12. Chang L, Cao Y, Fan G, Li C, Peng W (2019) A review of the applications of ion floatation: wastewater treatment, mineral beneficiation and hydrometallurgy. RSC Adv 9:20226–20239. https://doi.org/10.1039/C9RA02905B

    Article  CAS  Google Scholar 

  13. Todd I, Distin P (1985) Precipitate flotation of nickel from acidic laterite leach solutions. Hydrometallurgy 14:309–316. https://doi.org/10.1016/0304-386X(85)90041-6

    Article  CAS  Google Scholar 

  14. Caballero M, Cela R, Perez-Bustamante J (1990) Analytical applications of some flotation techniques- a review. Talanta 37:275–300. https://doi.org/10.1016/0039-9140(90)80056-L

    Article  CAS  Google Scholar 

  15. Lazaridis N, Peleka E, Karapantsios T, Matis K (2004) Copper removal from effluents by various separation techniques. Hydrometallurgy 74:149–156. https://doi.org/10.1016/j.hydromet.2004.03.003

    Article  CAS  Google Scholar 

  16. Charewicz W, Walkowiak W (1972) Selective floatation of inorganic ions. Sep Sci 7:631–646. https://doi.org/10.1080/00372367208057972

    Article  CAS  Google Scholar 

  17. Deliyanni EA, Kyzas GZ, Matis KA (2017) Various flotation techniques for metal ions removal. J Mol Liq 225:260–264. https://doi.org/10.1016/j.molliq.2016.11.069

    Article  CAS  Google Scholar 

  18. Peng W, Chang L, Li P, Han G, Huang Y, Cao Y (2019) An overview on the surfactants used in ion flotation. J Mol Liq 286:110955. https://doi.org/10.1016/j.molliq.2019.110955

    Article  CAS  Google Scholar 

  19. Doyle FM (2003) Ion flotation- its potential for hydrometallurgical operations. Int J Miner Process 72:387–399. https://doi.org/10.1016/S0301-7516(03)00113-3

    Article  CAS  Google Scholar 

  20. Lu S, Pugh RJ, Forssberg E (2005) Interfacial separation of particles. Elsevier, Amsterdam

    Google Scholar 

  21. Eivazihollagh A, Bäckström J, Norgren M, Edlund H (2018) Electrochemical recovery of copper complexed by DTPA and C12-DTPA from aqueous solution using a membrane cell. J Chem Technol Biotechnol 93:1421–1431. https://doi.org/10.1002/jctb.55103

    Article  CAS  Google Scholar 

  22. Doyle FM, Duyvesteyn S, Sreenivasarao K (1995) The use of ion flotation for detoxification of metal-contaminated waters and process effluents. In: Herbst JA (ed) Proceedings of the XIX International Mineral Congress, vol 4. Society for Mining, Metallurgy, and Exploration, pp 176–179

  23. Stalidis GA, Matis KA, Lazaridis NK (1989) Selective separation of Cu, Zn, and As from solution by flotation techniques. Sep Sci Technol 24:97–109. https://doi.org/10.1080/01496398908049754

    Article  CAS  Google Scholar 

  24. Scorzelli I, Fragomeni A, Torem M (1999) Removal of cadmium from a liquid effluent by ion flotation. Miner Eng 12:905–917. https://doi.org/10.1016/S0892-6875(99)00077-1

    Article  CAS  Google Scholar 

  25. Ulewicz M, Walkowiak W, Jang Y, Kim JS, Bartsch RA (2003) Ion flotation of Cadmium(II) and Zinc(II) in the presence of proton-ionizable lariat ethers. Anal Chem 75:2276–2279. https://doi.org/10.1021/ac026322y

    Article  CAS  Google Scholar 

  26. Polat H, Erdogan D (2007) Heavy metal removal from waste waters by ion flotation. J Hazard Mater 148:267–273. https://doi.org/10.1016/j.jhazmat.2007.02.013

    Article  CAS  Google Scholar 

  27. Yenial Ü, Bulut G (2017) Examination of flotation behavior of metal ions for process water remediation. J Mol Liq 241:130–135. https://doi.org/10.1016/j.molliq.2017.06.011

    Article  CAS  Google Scholar 

  28. Yenidünya MD (2006) Recovery of Zn(II), Mn(II) and Cu(II) in aqueous solutions by foam fractionation with sodium dodecyl sulphate in combination with chelating agents. Sep Sci Technol 41:1741–1756. https://doi.org/10.1080/01496390600636959

    Article  CAS  Google Scholar 

  29. Eivazihollagh A, Tejera J, Svanedal I, Edlund H, Blanco A, Norgren M (2017) Removal of Cd2+, Zn2+, and Sr2+ by ion flotation, using a surface- active derivative of DTPA (C12-DTPA). Ind Eng Chem Res 56:10605–10614. https://doi.org/10.1021/acs.iecr.7b03100

    Article  CAS  Google Scholar 

  30. Liu Z, Doyle FM (2001) A thermodynamic approach to ion flotation. I. Kinetics of cupric ion flotation with alkylsulfates. Colloids Surf A 178:79–92. https://doi.org/10.1016/S0927-7757(00)00555-0

    Article  CAS  Google Scholar 

  31. Liu Z, Doyle FM (2001) A thermodynamic approach to ion flotation. II. Metal ion selectivity in the SDS- Cu-Ca and SDS- Cu- Pb systems. Colloids Surf A 178:93–103. https://doi.org/10.1016/S0927-7757(00)00554-9

    Article  CAS  Google Scholar 

  32. Liu Z, Doyle FM (2009) Ion flotation of Co2+, Ni2+, and Cu2+ using dodecyldiethylenetriamine (Ddien). Langmuir 25:8927–8934. https://doi.org/10.1021/la900098g

    Article  CAS  Google Scholar 

  33. Schaider LA, Senn DB, Estes ER, Brabander DJ, Shine JP (2014) Sources and fates of heavy metals in a mining-impacted stream: temporal variability and the role of iron oxides. Sci Total Environ 490:456–466. https://doi.org/10.1016/j.scitotenv.2014.04.126

    Article  CAS  Google Scholar 

  34. Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:1–6. https://doi.org/10.1186/1745-6673-1-22

    Article  CAS  Google Scholar 

  35. Plum LM, Rink L, Hajo H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365. https://doi.org/10.3390/ijerph7041342

    Article  CAS  Google Scholar 

  36. O’Neal SL, Zheng W (2015) Manganese toxicity upon overexposure: a decade in review. Curr Environ Health Rep 2:315–328. https://doi.org/10.1007/s40572-015-0056-x.Manganese

    Article  CAS  Google Scholar 

  37. Doyle FM, Liu Z (2003) The effect of triethylenetetraamine (Trien) on the ion flotation of Cu2+ and Ni2+. J Colloid Interface Sci 258:396–403. https://doi.org/10.1016/S0021-9797(02)00092-9

    Article  CAS  Google Scholar 

  38. Dean JA (1999) Lange’s handbook of chemistry, 15th edn. McGraw-Hill, New York

    Google Scholar 

  39. Cho Y, Laskowski J (2002) Effect of flotation frothers on bubble size and foam stability. Int J Miner Process 64:69–80. https://doi.org/10.1016/S0301-7516(01)00064-3

    Article  CAS  Google Scholar 

  40. World Health Organization (2018) A global overview of national regulations and standards for drinking- water quality. WHO CC BY-NC-SA 3.0 IGO, Geneva.

Download references

Acknowledgements

The research leading to these results has received funding from the European Community’s Horizon 2020 Programme under Grant Agreement No. 812580 (MSCA- ETN SULTAN). This publication reflects only the authors’ view, exempting the Community from any liability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen Binnemans.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was D. Panias.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xanthopoulos, P., Binnemans, K. Removal of Cadmium, Zinc, and Manganese from Dilute Aqueous Solutions by Foam Separation. J. Sustain. Metall. 7, 78–86 (2021). https://doi.org/10.1007/s40831-020-00322-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-020-00322-2

Keywords

Navigation