Skip to main content

Advertisement

Log in

Efficient Electrochemical Recovery of Tellurium from Spent Electrolytes by Cyclone Electrowinning

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

A novel process for recovery of tellurium (Te) from spent Te electrolytes by cyclone electrowinning was developed. The effects of current density, electrolysis time, flow rate of the electrolyte (FRE), electrolyte temperature and cathode substrates on current efficiency (CE), tellurium recovery, cell voltage, energy consumption (EC), and surface morphology were systematically investigated. 99.90% of purity Te deposits were obtained while 95.61% of CE was achieved under the optimum conditions: electrolysis time of 24 h, current density of 60 A·m−2, FRE of 300 L·h−1, temperature of 30 °C and cathode substrates of 316L SS. Meanwhile, Te recovery and EC were 82.89% and 1810.58 kWh·t−1, respectively. Furthermore, as the solution after the electrowinning is recyclable, the consumption of reagents and the liquid effluent are minimized. All the parameters indicate that the cyclone electrowinning technology might serve as a promising alternative for recovering Te from spent Te electrolyte.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Jin W, Su J, Chen S, Li P, Moats MS, Maduraiveeran G, Lei H (2018) Efficient electrochemical recovery of fine tellurium powder from hydrochloric acid media via mass transfer enhancement. Sep Purif Technol 203:117–123. https://doi.org/10.1016/j.seppur.2018.04.026

    Article  CAS  Google Scholar 

  2. Abadías Llamas A, Bartie NJ, Heibeck M, Stelter M, Reuter MA (2019) Simulation-based exergy analysis of large circular economy systems: zinc production coupled to CdTe photovoltaic module life cycle. J Sustain Metall 6(1):34–67. https://doi.org/10.1007/s40831-019-00255-5

    Article  Google Scholar 

  3. Makuei FM, Senanayake G (2018) Extraction of tellurium from lead and copper bearing feed materials and interim metallurgical products—a short review. Miner Eng 115:79–87. https://doi.org/10.1016/j.mineng.2017.10.013

    Article  CAS  Google Scholar 

  4. Yu H, Chu Y, Zhang T, Yu L, Yang D, Qiu F, Yuan D (2018) Recovery of tellurium from aqueous solutions by adsorption with magnetic nanoscale zero-valent iron (NZVFe). Hydrometallurgy 177:1–8. https://doi.org/10.1016/j.hydromet.2018.02.009

    Article  CAS  Google Scholar 

  5. Barnwal A, Dhawan N (2019) Evaluation of fluidization process for recovery of metals from discarded printed circuit boards. J Sustain Metall 5(4):519–527. https://doi.org/10.1007/s40831-019-00242-w

    Article  Google Scholar 

  6. Lee TI, Lee S, Lee E, Sohn S, Lee Y, Lee S, Moon G, Kim D, Kim YS, Myoung JM, Wang ZL (2013) High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly. Adv Mater 25(21):2920–2925. https://doi.org/10.1002/adma.201300657

    Article  CAS  Google Scholar 

  7. Halpert G, Sredni B (2014) The effect of the novel tellurium compound AS101 on autoimmune diseases. Autoimmun Rev 13(12):1230–1235. https://doi.org/10.1016/j.autrev.2014.08.003

    Article  CAS  Google Scholar 

  8. Guo X, Xu Z, Li D, Tian Q, Xu R, Zhang Z (2017) Recovery of tellurium from high tellurium-bearing materials by alkaline sulfide leaching followed by sodium sulfite precipitation. Hydrometallurgy 171:355–361. https://doi.org/10.1016/j.hydromet.2017.06.010

    Article  CAS  Google Scholar 

  9. Sinha T, Lilhare D, Khare A (2019) A review on the improvement in performance of CdTe/CdS thin-film solar cells through optimization of structural parameters. J Mater Sci 54(19):12189–12205. https://doi.org/10.1007/s10853-019-03651-0

    Article  CAS  Google Scholar 

  10. Chen P, Xiao H, Chen J, Chen L, Zhang D, Liu W, Yang T (2020) Oxygen-rich side-blown bath smelting of copper dross: a process study. J Sustain Metall 6(2):344–354. https://doi.org/10.1007/s40831-020-00278-3

    Article  Google Scholar 

  11. Matsubara T, Uddin MA, Kato Y, Kawanishi T, Hayashi Y (2018) Chemical treatment of copper and aluminum derived from waste crystalline silicon solar cell modules by mixed acids of HNO3 and HCl. J Sustain Metall 4(3):378–387. https://doi.org/10.1007/s40831-018-0184-2

    Article  Google Scholar 

  12. Wang Q, Wang Y (2019) Fundamental electrochemical behavior of antimony in alkaline solution. J Sustain Metall 5(4):606–616. https://doi.org/10.1007/s40831-019-00253-7

    Article  Google Scholar 

  13. Abbasalizadeh A, Malfliet A, Seetharaman S, Sietsma J, Yang Y (2017) Electrochemical extraction of rare earth metals in molten fluorides: conversion of rare earth oxides into rare earth fluorides using fluoride additives. J Sustain Metall 3(3):627–637. https://doi.org/10.1007/s40831-017-0120-x

    Article  Google Scholar 

  14. Jin W, Su J, Zheng S, Lei H (2017) Controlled electrodeposition of uniform copper powder from hydrochloric acid solutions. J Electrochem Soc 164(12):D723–D728. https://doi.org/10.1149/2.1491712jes

    Article  CAS  Google Scholar 

  15. Zhong J, Wang G, Fan J, Li Q, Kiani M, Zhang J, Yang H, Chen J, Wang R (2018) Optimization of process on electrodeposition of 4N tellurium from alkaline leaching solutions. Hydrometallurgy 176:17–25. https://doi.org/10.1016/j.hydromet.2017.11.011

    Article  CAS  Google Scholar 

  16. Korkmaz K, Alemrajabi M, Rasmuson Å, Forsberg K (2018) Recoveries of valuable metals from spent nickel metal hydride vehicle batteries via sulfation, selective roasting, and water leaching. J Sustain Metall 4(3):313–325. https://doi.org/10.1007/s40831-018-0169-1

    Article  Google Scholar 

  17. Rampou M, Ndlovu S, Shemi A (2017) Purification of coal fly ash leach liquor for alumina recovery using an integrated precipitation and solvent extraction process. J Sustain Metall 3(4):782–792. https://doi.org/10.1007/s40831-017-0142-4

    Article  Google Scholar 

  18. Xu Z, Guo X, Li D, Tian Q, Zhu L (2020) Selective recovery of Sb and Te from the sodium sulfide leach solution of Te-bearing alkaline skimming slag by drop-wise H2O2 addition followed by Na2S–Na2SO3 precipitation. Hydrometallurgy 191:105219. https://doi.org/10.1016/j.hydromet.2019.105219

    Article  CAS  Google Scholar 

  19. Xu Z, Guo X, Li D, Tian Q (2020) Leaching kinetics of tellurium-bearing materials in alkaline sulfide solutions. Miner Process Extr Metall Rev 41(1):1–10. https://doi.org/10.1080/08827508.2018.1506981

    Article  CAS  Google Scholar 

  20. Kofuji H, Amamoto I, Yasumoto M, Sasaki K, Myochin M, Terai T (2009) Evaluation of phosphate thermodynamic properties for spent electrolyte recycle. J Nucl Mater Thermochem Thermophys Nucl Mater 389(1):173–178. https://doi.org/10.1016/j.jnucmat.2009.01.025

    Article  CAS  Google Scholar 

  21. Thanu VRC, Jayakumar M (2020) Electrochemical recovery of antimony and bismuth from spent electrolytes. Sep Purif Technol 235:116169. https://doi.org/10.1016/j.seppur.2019.116169

    Article  CAS  Google Scholar 

  22. Azizi A, Nozhati RA, Sillanpää M (2020) Solvent extraction of copper and zinc from sulfate leach solution derived from a porcelain stone tailings sample with Chemorex CP-150 and D2EHPA. J Sustain Metall 6(2):250–258. https://doi.org/10.1007/s40831-020-00271-w

    Article  Google Scholar 

  23. Bronshtein I, Feldman Y, Shilstein S, Wachtel E, Lubomirsky I, Kaplan V (2018) Efficient chloride salt extraction of platinum group metals from spent catalysts. J Sustain Metall 4(1):103–114. https://doi.org/10.1007/s40831-017-0155-z

    Article  Google Scholar 

  24. Xu H, Li B, Wei Y, Wang H (2020) Extracting of copper from simulated leaching solution of copper–cadmium residues by cyclone electrowinning technology. Hydrometallurgy 194:105298. https://doi.org/10.1016/j.hydromet.2020.105298

    Article  CAS  Google Scholar 

  25. Yang W, Sun L, Hu Y, Yang Y, Jiang X, Wang H (2018) Cyclone electrowinning of antimony from antimonic gold concentrate ores. In: Paper presented at the rare metal technology 2018, Phoenix, AZ

  26. Wang Y, Xue Y, Su J, Zheng S, Lei H, Cai W, Jin W (2018) Efficient electrochemical recovery of dilute selenium by cyclone electrowinning. Hydrometallurgy 179:232–237. https://doi.org/10.1016/j.hydromet.2018.05.019

    Article  CAS  Google Scholar 

  27. Xu Z, Guo X, Tian Q, Li D, Zhang Z, Zhu L (2020) Electrodeposition of tellurium from alkaline solution by cyclone electrowinning. Hydrometallurgy 193:105316. https://doi.org/10.1016/j.hydromet.2020.105316

    Article  CAS  Google Scholar 

  28. Guo X, Qin H, Tian Q, Li D (2020) Recovery of metals from waste printed circuit boards by selective leaching combined with cyclone electrowinning process. J Hazard Mater 384:121355. https://doi.org/10.1016/j.jhazmat.2019.121355

    Article  CAS  Google Scholar 

  29. Fan Y, Jiang L, Yang J, Jiang Y, Liu F (2016) The electrochemical behavior of tellurium on stainless steel substrate in alkaline solution and the illumination effects. J Electroanal Chem 771:17–22. https://doi.org/10.1016/j.jelechem.2016.03.043

    Article  CAS  Google Scholar 

  30. Ha YC, Sohn HJ, Jeong GJ, Lee CK, Rhee KI (2000) Electrowinning of tellurium from alkaline leach liquor of cemented Te. J Appl Electrochem 30(3):315–322. https://doi.org/10.1023/A:1003867821601

    Article  CAS  Google Scholar 

  31. Handle B, Broderick G, Paschen P (1997) A statistical response surface study of the tellurium electrowinning process. Hydrometallurgy 46(1):105–120. https://doi.org/10.1016/S0304-386X(97)00004-2

    Article  CAS  Google Scholar 

  32. Marcel P (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Inc., Long Island City

    Google Scholar 

  33. Kowalik R, Kutyła D, Mech K, Żabiński P (2016) Analysis of tellurium thin films electrodeposition from acidic citric bath. Appl Surf Sci 388:817–824. https://doi.org/10.1016/j.apsusc.2016.03.127

    Article  CAS  Google Scholar 

  34. Mercado-Borrayo BM, González-Chávez JL, Ramírez-Zamora RM, Schouwenaars R (2018) Valorization of metallurgical slag for the treatment of water pollution: an emerging technology for resource conservation and re-utilization. J Sustain Metall 4(1):50–67. https://doi.org/10.1007/s40831-018-0158-4

    Article  Google Scholar 

  35. Zhang QB, Hua YX, Dong TG, Zhou DG (2009) Effects of temperature and current density on zinc electrodeposition from acidic sulfate electrolyte with [BMIM]HSO4 as additive. J Appl Electrochem 39(8):1207–1216. https://doi.org/10.1007/s10800-009-9786-5

    Article  CAS  Google Scholar 

  36. Zhang H, Ran L, Zou Z, He G, Tang Y, Li J (2018) Effect of current transient enhancement on thermal field of aluminum electrolysis cell for the accommodation of wind power. J Sustain Metall 4(3):359–366. https://doi.org/10.1007/s40831-018-0177-1

    Article  Google Scholar 

  37. Stec M, Jagustyn B, Słowik K, Ściążko M, Iluk T (2020) Influence of high chloride concentration on pH control in hydroxide precipitation of heavy metals. J Sustain Metall 6(2):239–249. https://doi.org/10.1007/s40831-020-00270-x

    Article  Google Scholar 

  38. Awe SA, Sandström Å (2013) Electrowinning of antimony from model sulphide alkaline solutions. Hydrometallurgy 137:60–67. https://doi.org/10.1016/j.hydromet.2013.04.006

    Article  CAS  Google Scholar 

  39. Safizadeh F, Su C, Ghali E, Houlachi G (2017) The effect of lead and some operating parameters on cathode contamination during zinc electrowinning. Hydrometallurgy 171:69–76. https://doi.org/10.1016/j.hydromet.2017.04.013

    Article  CAS  Google Scholar 

  40. Kowalik R, Kutyła D, Mech K, Tokarski T, Żabiński P (2015) Electrowinning of tellurium from acidic solutions. Arch Metall Mater 60(2):591–596. https://doi.org/10.1515/amm-2015-0178

    Article  CAS  Google Scholar 

  41. Pissolati NC, Majuste D (2018) Morphology, roughness and microhardness of nickel electrodeposits produced in sulfate media on 316 L SS or Ti cathodes. Hydrometallurgy 175:193–202. https://doi.org/10.1016/j.hydromet.2017.11.012

    Article  CAS  Google Scholar 

  42. Liu Q, Zhao G, Zhao Y (2014) Regeneration and purification of spent electrolyte from sodium hydroxide zinc metallurgy using causticisation. Hydrometallurgy 144–145:107–113. https://doi.org/10.1016/j.hydromet.2014.01.012

    Article  CAS  Google Scholar 

  43. Ujaczki É, Courtney R, Cusack P, Krishna Chinnam R, Clifford S, Curtin T, O’Donoghue L (2019) Recovery of gallium from bauxite residue using combined oxalic acid leaching with adsorption onto Zeolite HY. J Sustain Metall 5(2):262–274. https://doi.org/10.1007/s40831-019-00226-w

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (Grant No. 51922108), Hunan Natural Science Foundation (Grant No. 2019JJ20031), Hunan Key Research and Development Program (Grant No. 2019SK2061), National Natural Science Foundation of China (Grant No. 52074363), and Qingyuan Innovation and Entrepreneurship Research Team Project (No. 2018001) (Typical High Purity Rare Metal Preparation and Industrialization Team).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Xu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was Hongmin Zhu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Q., Li, J., Guo, X. et al. Efficient Electrochemical Recovery of Tellurium from Spent Electrolytes by Cyclone Electrowinning. J. Sustain. Metall. 7, 27–45 (2021). https://doi.org/10.1007/s40831-020-00317-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-020-00317-z

Keywords

Navigation