Advertisement

Journal of Sustainable Metallurgy

, Volume 4, Issue 2, pp 176–186 | Cite as

Recycling Waste Crystalline Silicon Photovoltaic Modules by Electrostatic Separation

  • Pablo Dias
  • Lucas Schmidt
  • Lucas Bonan Gomes
  • Andrea Bettanin
  • Hugo Veit
  • Andréa Moura Bernardes
Innovations in WEEE Recycling

Abstract

Photovoltaic (PV) modules contain both valuable and hazardous materials, which makes their recycling meaningful economically and environmentally. The recycling of the waste of PV modules is being studied and implemented in several countries. Current available recycling procedures include either the use of high-temperature processes, the use of leaching agents or a combination of both. In this study, waste of silicon-based PV modules are separated using an electrostatic separator after mechanical milling. An empirical study is used to verify if the separation works and to select and fix several parameters. Rotation speed of the roller and DC voltage are evaluated as a result of the separation of metals (silver and copper), silicon, glass, and polymers. The efficiency of metals’ separation is determined by acid leaching of the corresponding fractions followed by inductively coupled plasma optical emission spectrometry (ICP-OES); that of polymer separation is determined by mass difference due to combustion of the corresponding fractions; and those of glass and silicon quantities are determined by X-ray diffraction (XRD) followed by characterization using Rietveld quantitative phase analysis (RQPA). It is shown that the optimal separation is obtained under different operating voltages of 24 and 28 kV and a rotation speed of 30 RPM or higher. Furthermore, it is shown that there is no significant difference among the tested parameters. Results provide a new option in the recycling of waste of silicon PV modules that can and should be optimized.

Keywords

Crystalline silicon Electrostatic separation Material separation optimization Recycling Solar panel 

Notes

Acknowledgements

The authors are grateful to Capes, CNPq, FINEP, and FAPERGS (Brazil) for their financial support.

Supplementary material

40831_2018_173_MOESM1_ESM.docx (52 kb)
Supplementary material 1 (DOCX 53 kb)

References

  1. 1.
    Zuser A, Rechberger H (2011) Considerations of resource availability in technology development strategies: the case study of photovoltaics. Resour Conserv Recycl 56:56–65.  https://doi.org/10.1016/j.resconrec.2011.09.004 CrossRefGoogle Scholar
  2. 2.
    Kalogirou S (2009) Solar energy engineering: processes and systems, 1st edn. Elsevier, San DiegoGoogle Scholar
  3. 3.
    Tao J, Yu S (2015) Review on feasible recycling pathways and technologies of solar photovoltaic modules. Sol Energy Mater Sol Cells 141:108–124.  https://doi.org/10.1016/j.solmat.2015.05.005 CrossRefGoogle Scholar
  4. 4.
    Weckend S, Wade A, Heath G (2016) End-of-life management: solar photovoltaic panels. National Renewable Energy Laboratory (NREL), GoldenGoogle Scholar
  5. 5.
    Dias PR, Benevit MG, Veit HM (2016) Photovoltaic solar panels of crystalline silicon: characterization and separation. Waste Manag Res 34:235–245CrossRefGoogle Scholar
  6. 6.
    Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408:183–191.  https://doi.org/10.1016/j.scitotenv.2009.09.044 CrossRefGoogle Scholar
  7. 7.
    Tickner J, Rajarao R, Lovric B et al (2016) Measurement of gold and other metals in electronic and automotive waste using gamma activation analysis. J Sustain Metall 2:296–303.  https://doi.org/10.1007/s40831-016-0051-y CrossRefGoogle Scholar
  8. 8.
    Dias P, Javimczik S, Benevit M et al (2016) Recycling WEEE: extraction and concentration of silver from waste crystalline silicon photovoltaic modules. Waste Manag 57:220–225.  https://doi.org/10.1016/j.wasman.2016.03.016 CrossRefGoogle Scholar
  9. 9.
    Sahajwalla V, Cayumil R, Khanna R et al (2015) Recycling polymer-rich waste printed circuit boards at high temperatures: recovery of value-added carbon resources. J Sustain Metall 1:75–84.  https://doi.org/10.1007/s40831-014-0002-4 CrossRefGoogle Scholar
  10. 10.
    Tammaro M, Salluzzo A, Rimauro J et al (2016) Experimental investigation to evaluate the potential environmental hazards of photovoltaic panels. J Hazard Mater 306:395–405.  https://doi.org/10.1016/j.jhazmat.2015.12.018 CrossRefGoogle Scholar
  11. 11.
    Chantana J, Kamei A, Minemoto T (2017) Influences of environmental factors on Si-based photovoltaic modules after longtime outdoor exposure by multiple regression analysis. Renew Energy 101:10–15.  https://doi.org/10.1016/j.renene.2016.08.037 CrossRefGoogle Scholar
  12. 12.
    Radziemska E (2014) Recycling of photovoltaic solar cells and modules-the state-of-art. LAP LAMBERT Academic Publishing, SaarbruckenGoogle Scholar
  13. 13.
    Pinho JT, Galdino MA (2014) Engineering manual for photovoltaic systems retrieved from Rio de Janeiro: CEPEL—CRESESB. Manual de engenharia para sistemas fotovoltaicosGoogle Scholar
  14. 14.
    Hansen AD, Sorensen P, Hansen LH, Bindner H (2000) Models for a stand-alone PV system. Riso National Laboratory, RoskildeGoogle Scholar
  15. 15.
    Dias P, Javimczik S, Benevit M, Veit H (2016) Recycling WEEE: polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules. Waste Manag 60:716–722.  https://doi.org/10.1016/j.wasman.2016.08.036 CrossRefGoogle Scholar
  16. 16.
    Bruton TM (1994) Re-cycling of high value, high energy content components of silicon PV modules. In: Proceedings of 12th EC-PVSEC, pp 459–463Google Scholar
  17. 17.
    Jung B, Park J, Seo D, Park N (2016) Sustainable system for raw-metal recovery from crystalline silicon solar panels: from noble-metal extraction to lead removal. ACS Sustain Chem Eng 4:4079–4083.  https://doi.org/10.1021/acssuschemeng.6b00894 CrossRefGoogle Scholar
  18. 18.
    Doi T, Tsuda I, Unagida H et al (2001) Experimental study on PV module recycling with organic solvent method. Sol Energy Mater Sol Cells 67:397–403CrossRefGoogle Scholar
  19. 19.
    Klugmann-Radziemska E, Ostrowski P (2010) Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew Energy 35:1751–1759.  https://doi.org/10.1016/j.renene.2009.11.031 CrossRefGoogle Scholar
  20. 20.
    Kang S, Yoo S, Lee J et al (2012) Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renew Energy 47:152–159.  https://doi.org/10.1016/j.renene.2012.04.030 CrossRefGoogle Scholar
  21. 21.
    Zhang L, Xu Z (2016) Separating and recycling plastic, glass, and gallium from waste solar cell modules by nitrogen pyrolysis and vacuum decomposition. Environ Sci Technol 50:9242–9250.  https://doi.org/10.1021/acs.est.6b01253 CrossRefGoogle Scholar
  22. 22.
    Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158:228–256.  https://doi.org/10.1016/j.jhazmat.2008.02.001 CrossRefGoogle Scholar
  23. 23.
    Dias P, Machado A, Huda N, Bernardes AM (2018) Waste electric and electronic equipment (WEEE) management: a study on the Brazilian recycling routes. J Clean Prod 174:7–16.  https://doi.org/10.1016/j.jclepro.2017.10.219 CrossRefGoogle Scholar
  24. 24.
    Tilmatine A, Medles K, Bendimerad S-E et al (2009) Electrostatic separators of particles: application to plastic/metal, metal/metal and plastic/plastic mixtures. Waste Manag 29:228–232.  https://doi.org/10.1016/j.wasman.2008.06.008 CrossRefGoogle Scholar
  25. 25.
    Cui J, Forssberg E (2003) Mechanical recycling of waste electric and electronic equipment: a review. J Hazard Mater 99:243–263.  https://doi.org/10.1016/S0304-3894(03)00061-X CrossRefGoogle Scholar
  26. 26.
    Lai KC, Lim SK, Teh PC, Yeap KH (2016) Modeling electrostatic separation process using artificial neural network (ANN). Procedia Comput Sci 91:372–381.  https://doi.org/10.1016/j.procs.2016.07.099 CrossRefGoogle Scholar
  27. 27.
    Wu J, Qin Y, Zhou Q, Xu Z (2009) Impact of nonconductive powder on electrostatic separation for recycling crushed waste printed circuit board. J Hazard Mater 164:1352–1358.  https://doi.org/10.1016/j.jhazmat.2008.09.061 CrossRefGoogle Scholar
  28. 28.
    Richard G, Touhami S, Zeghloul T, Dascalescu L (2016) Optimization of metals and plastics recovery from electric cable wastes using a plate-type electrostatic separator. Waste Manag 60:112–122.  https://doi.org/10.1016/j.wasman.2016.06.036 CrossRefGoogle Scholar
  29. 29.
    Richard G, Salama A, Medles K et al (2017) Comparative study of three high-voltage electrode configurations for the electrostatic separation of aluminum, copper and PVC from granular WEEE. J Electrost 88:29–34.  https://doi.org/10.1016/j.elstat.2016.12.022 CrossRefGoogle Scholar
  30. 30.
    Veit HM, Diehl TR, Salami AP et al (2005) Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap. Waste Manag 25:67–74.  https://doi.org/10.1016/j.wasman.2004.09.009 CrossRefGoogle Scholar
  31. 31.
    Jiang W, Jia L, Zhen-ming X (2009) A new two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board. J Hazard Mater 161:257–262.  https://doi.org/10.1016/j.jhazmat.2008.03.088 CrossRefGoogle Scholar
  32. 32.
    Kaya M (2016) Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manag 57:64–90.  https://doi.org/10.1016/j.wasman.2016.08.004 CrossRefGoogle Scholar
  33. 33.
    Awasthi AK, Li J (2017) An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE. Resour Conserv Recycl 126:228–239.  https://doi.org/10.1016/j.resconrec.2017.07.014 CrossRefGoogle Scholar
  34. 34.
    Sahajwalla V, Pahlevani F, Maroufi S, Rajarao R (2016) Green manufacturing: a key to innovation economy. J Sustain Metall 2:273–275.  https://doi.org/10.1007/s40831-016-0087-z CrossRefGoogle Scholar
  35. 35.
    ERIEZ (2013) MMPM-618C Installation operation maintenance manual—laboratory electrostatic separator; high tension roll (HTR) separatorGoogle Scholar
  36. 36.
    De La Torre AG, Bruque S, Aranda MAG (2001) Rietveld quantitative amorphous content analysis. J Appl Crystallogr 34:196–202.  https://doi.org/10.1107/S0021889801002485 CrossRefGoogle Scholar
  37. 37.
    Lutterotti L, Matthies S, Wenk H-R (1999) MAUD (material analysis using diffraction): a user friendly Java program for Rietveld texture analysis and more. In: Proceeding of the twelfth international conference on textures of materials (ICOTOM-12). NRC Research Press, Ottawa, p 1599Google Scholar
  38. 38.
    Young RA (1995) The Rietveld Method. Oxford University Press, OxfordGoogle Scholar
  39. 39.
    Bansal NP, Doremus RH (2013) Handbook of glass properties. Elsevier, New YorkGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Pablo Dias
    • 1
    • 2
  • Lucas Schmidt
    • 1
  • Lucas Bonan Gomes
    • 3
  • Andrea Bettanin
    • 1
  • Hugo Veit
    • 1
  • Andréa Moura Bernardes
    • 1
  1. 1.Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M)Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Faculty of Science and EngineeringMacquarie UniversitySydneyAustralia
  3. 3.X-Ray Diffraction Laboratory, Geosciences InstituteFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations