Advertisement

Journal of Sustainable Metallurgy

, Volume 4, Issue 1, pp 50–67 | Cite as

Valorization of Metallurgical Slag for the Treatment of Water Pollution: An Emerging Technology for Resource Conservation and Re-utilization

  • B. M. Mercado-Borrayo
  • J. L. González-Chávez
  • R. M. Ramírez-Zamora
  • R. Schouwenaars
Thematic Section: Slag Valorisation

Abstract

Valorization of metallurgical slag as a material for the treatment of polluted water resources has a threefold environmental impact and enhances the sustainability of both the metallurgical industry and water-treatment processes. Firstly, the amount of waste slag to be disposed of is reduced; secondly, expensive chemical reagents required for water treatment are saved; thirdly, water resources, which are unfit for human consumption or irrigation, can be accessed. This paper reviews the use of iron, steel, and copper slag in environmental applications. While this may include air and soil remediation, the focus is on water pollution control, demonstrating the effectiveness of slag for the removal of inorganic, organic, and biological contaminants. Iron and steel slags are mainly used as sorbents or as reagents for the co-precipitation of contaminants. Copper slag finds applications in advanced chemical oxidation processes with high efficiency. The corresponding methods are emerging technologies, which are developed to minimize the costs (investment, operational, and maintenance) of pollutant removal and are often focused on small-scale processes or local treatments, which are important in the sustainable development of local communities in developing economies.

Keywords

Waste water Drinkable water Copper slag Ferrous slag Advanced oxidation processes Sorption 

Notes

Acknowledgements

This work was funded by the “Dirección general de asuntos del personal académico” (DGAPA) under Grant No. IV100616.

References

  1. 1.
    Berger E, Haase P, Kuemmerlen M, Leps M, Bernhard SR, Sunbdermann A (2017) Water quality variables and pollution sources shaping stream macroinvertebrate communities. Sci Total Environ 587–588:1–10.  https://doi.org/10.1016/j.scitotenv.2017.02.031 CrossRefGoogle Scholar
  2. 2.
    Lee KE, Morad N, Teng TT, Poh BT (2012) Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: a review. Chem Eng J 203:370–386.  https://doi.org/10.1016/j.cej.2012.06.109 CrossRefGoogle Scholar
  3. 3.
    Kang J, Chen C, Sun W, Tang H, Yin Z, Liu R, Hu Y, Nguyen AN (2017) A significant improvement of scheelite recovery using recycled flotation wastewater treated by hydrometallurgical waste acid. J Clean Prod 151:419–426.  https://doi.org/10.1016/j.jclepro.2017.03.073 CrossRefGoogle Scholar
  4. 4.
    Yuan H, He Z (2015) Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: a review. Biores Technol 195:202–209.  https://doi.org/10.1016/j.biortech.2015.05.058 CrossRefGoogle Scholar
  5. 5.
    Guo H, You F, Yu S, Li L, Zhao D (2015) Mechanisms of chemical cleaning of ion exchange membranes: a case study of plant-scale electrodialysis for oily wastewater treatment. J Membr Sci 496:310–317.  https://doi.org/10.1016/j.memsci.2015.09.005 CrossRefGoogle Scholar
  6. 6.
    Kassab G, Halalsheh M, Klapwikj A, Fayyad M, van Lier JB (2010) Sequential anaerobic-aerobic treatment for domestic wastewater—a review. Biores Technol 101(10):3299–3310.  https://doi.org/10.1016/j.biortech.2009.12.039 CrossRefGoogle Scholar
  7. 7.
    Boczkaj G, Fenandes A (2017) Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chem Eng J 320:608–633.  https://doi.org/10.1016/j.cej.2017.03.084 CrossRefGoogle Scholar
  8. 8.
    Kul M, Oskay OK (2015) Separation and recovery of valuable metals from real mix electroplating wastewater by solvent extraction. Hydrometallurgy 155:153–160.  https://doi.org/10.1016/j.hydromet.2015.04.021 CrossRefGoogle Scholar
  9. 9.
    Tran HN, You S-J, Hosseini-Bandegharaei A, Chao H-P (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116.  https://doi.org/10.1016/j.watres.2017.04.014 CrossRefGoogle Scholar
  10. 10.
    Lu L, Ren JZ (2016) Microbial electrolysis cells for waste biorefinery: a state of the art review. Biores Technol 215:254–264.  https://doi.org/10.1016/j.biortech.2016.03.034 CrossRefGoogle Scholar
  11. 11.
    Tito DN, Krystynik P, Kluson P (2016) Notes on process and data analysis in electrocoagulation—the importance of standardization and clarity. Chem Eng Process 104:22–28.  https://doi.org/10.1016/j.cep.2016.02.011 CrossRefGoogle Scholar
  12. 12.
    Wang K, Abdalla AA, Khaleel MA, Hilal N, Kharaisheh MK (2017) Mechanical properties of water desalination and wastewater treatment membranes. Desalination 401(2):190–205.  https://doi.org/10.1016/j.desal.2016.06.032 CrossRefGoogle Scholar
  13. 13.
    Duo W, Zhou Z, Jiang L-M, Jiang A, Huang R, Tian X, Zhang W, Chen D (2017) Sulfate removal from wastewater using ettringite precipitation: magnesium ion inhibition and process optimization. J Environ Manag 196:518–526.  https://doi.org/10.1016/j.jenvman.2017.03.054 CrossRefGoogle Scholar
  14. 14.
    Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Din MFM, Taib SM, Sabbagh F, Sairan FM (2015) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manag 163:125–133.  https://doi.org/10.1016/j.jenvman.2015.08.018 CrossRefGoogle Scholar
  15. 15.
    Moreira FC, Boaventura RAR, Brillas E, Vilar VJPV (2017) Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewasters. Appl Catal B 202(217):261.  https://doi.org/10.1016/j.apcatb.2016.08.037 Google Scholar
  16. 16.
    Abou-Shady A (2017) Recycling of polluted wastewater for agriculture purpose using electrodialysis: perspective of large scale application. Chem Eng J 323:1–18.  https://doi.org/10.1016/j.cej.2017.04.083 CrossRefGoogle Scholar
  17. 17.
    Otterpohl R, Grottker M, Lang J (1997) Sustainable water and waste management in urban areas. Water Sci Technol 35(9):121–133.  https://doi.org/10.1016/S0273-1223(97)00190-X Google Scholar
  18. 18.
    Starr RC, Cherry JA (1994) In situ remediation of contaminated groundwater: the funnel and gate system. Groundwater 32(3):465–476.  https://doi.org/10.1111/j.1745-6584.1994.tb00664.x CrossRefGoogle Scholar
  19. 19.
    Harrelkas F, Azizi A, Yaacoubi A, Benhammou A, Pons MN (2009) Treatment of textile dye effluents using coagulation-flocculation coupled with membrane processes or adsorption on powdered activated carbon. Desalination 235(1–3):330–339.  https://doi.org/10.1016/j.desal.2008.02.012 CrossRefGoogle Scholar
  20. 20.
    Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125.  https://doi.org/10.1016/j.jhazmat.2011.11.073 CrossRefGoogle Scholar
  21. 21.
    Lin S-H, Juang R-S (2009) Adsorption of phenol and its derivatives from water using synthetic resins and low –cost natural adsorbents: a review. J Environ Manage 90(3):1336–1349.  https://doi.org/10.1016/j.jenvman.2008.09.003 CrossRefGoogle Scholar
  22. 22.
    Wang S, Ang HM, Tadé MO (2008) Novel applications or red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 72(11):1621–1635.  https://doi.org/10.1016/j.chemosphere.2008.05.013 CrossRefGoogle Scholar
  23. 23.
    Shen H, Forssberg E (2003) An overview of recovery of metals from slags. Waste Manag 23:933–949.  https://doi.org/10.1016/S0956-053X(02)00164-2 CrossRefGoogle Scholar
  24. 24.
    Daifullah AAM, Girgis BS, Gad HMH (2003) Utilization of agro-residues (rice husk) in small waste water treatment plans. Mater Lett 57(11):1723–1731.  https://doi.org/10.1016/S0167-577X(02)01058-3 CrossRefGoogle Scholar
  25. 25.
    Haghseresht F, Lu GQ (1998) Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy Fuel 12(6):1100–1107.  https://doi.org/10.1021/ef9801165 CrossRefGoogle Scholar
  26. 26.
    Wang S, Boyjoo Y, Choueib A, Zhu ZH (2005) Removal of dyes from aqueous solution using fly ash and red mud. Water Res 39(1):129–138.  https://doi.org/10.1016/j.watres.2004.09.011 CrossRefGoogle Scholar
  27. 27.
    Kostura B, Kulveitova H, Lesko J (2005) Blast furnace slags as sorbents of phosphate from water solutions. Water Res 39(1):1795–1802.  https://doi.org/10.1016/j.watres.2005.03.010 CrossRefGoogle Scholar
  28. 28.
    Namasivayam C, Ranganathan K (1995) Removal of Cd(II) from wastewater by adsorption on “waste” Fe(III)Cr(III) hydroxide. Water Res 29(7):1737–1744.  https://doi.org/10.1016/0043-1354(94)00320-7 CrossRefGoogle Scholar
  29. 29.
    Hui KS, Chao CYH, Kot SC (2005) Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J Hazard Mater 127(1–3):89–101.  https://doi.org/10.1016/j.jhazmat.2005.06.027 CrossRefGoogle Scholar
  30. 30.
    Makris KC, Sarkar D, Datta R (2006) Evaluating a drinking-water waste by-product as a novel sorbent for arsenic. Chemosphere 64(5):730–741.  https://doi.org/10.1016/j.chemosphere.2005.11.054 CrossRefGoogle Scholar
  31. 31.
    Espejel-Ayala F, Schouwenaars R, Durán-Moreno A, Ramírez-Zamora R (2014) Use of drinking water sludge in the production process of zeolites. Res Chem Intermed 40(8):2919–2928.  https://doi.org/10.1007/s11164-013-1138-8 CrossRefGoogle Scholar
  32. 32.
    Manninga B, Goldberg S (1997) Arsenic(III) and Arsenic(V) adsorption on three California soils. Soils Sci 162(12):886–895.  https://doi.org/10.1097/00010694-199712000-00004 CrossRefGoogle Scholar
  33. 33.
    Bajpai S, Chaudhuri M (1999) Removal of arsenic from groundwater by manganese dioxide-coated sand. J Environ Eng 125(8):782–784.  https://doi.org/10.1061/(ASCE)0733-9372(1999)125:8(782) CrossRefGoogle Scholar
  34. 34.
    Manning BA, Goldberg S (1997) Adsorption and stability of arsenic (III) at the clay mineral-water interface. Environ Sci Technol 31(7):2005–2011.  https://doi.org/10.1021/es9608104 CrossRefGoogle Scholar
  35. 35.
    Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156(1):11–24.  https://doi.org/10.1016/j.cej.2009.10.029 CrossRefGoogle Scholar
  36. 36.
    Driehaus W, Seith R, Jekel M (1995) Oxidation of arsenate(III) with manganese oxides in water treatment. Water Res 29(1):297–305.  https://doi.org/10.1016/0043-1354(94)E0089-O CrossRefGoogle Scholar
  37. 37.
    Katsoyiannis IA, Zouboulis AI, Jekel M (2004) Kinetics of bacterial As(III) oxidation and subsequent As(V) removal by sorption onto biogenic manganese oxide during groundwater treatment. Ind Eng Chem Res 43(2):486–493.  https://doi.org/10.1021/ie030525a CrossRefGoogle Scholar
  38. 38.
    Ghorai S, Pant KK (2005) Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Sep Purif Technol 42(3):265–271.  https://doi.org/10.1016/j.seppur.2004.09.001 CrossRefGoogle Scholar
  39. 39.
    Wasay SA, Haran MdJ, Tokunaga S (1996) Adsorption of fluoride, phosphate, and arsenate ions on lanthanum-impregnated silica gel. Water Environ Res 68(3):295–300.  https://doi.org/10.2175/106143096X127730 CrossRefGoogle Scholar
  40. 40.
    Wilkie JA, Hering JG (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surf A 107:97–110.  https://doi.org/10.1016/0927-7757(95)03368-8 CrossRefGoogle Scholar
  41. 41.
    Ren Z, Zhang G, Chen JP (2011) Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent. J Colloid Interface Sci 358(1):230–237.  https://doi.org/10.1016/j.jcis.2011.01.013 CrossRefGoogle Scholar
  42. 42.
    Raichur AM, Basu MJ (2001) Adsorption of fluoride onto mixed rare earth oxides. Sep Purif Technol 24(1–2):121–127.  https://doi.org/10.1016/S1383-5866(00)00219-7 CrossRefGoogle Scholar
  43. 43.
    Kundu S, Kavalakatt SS, Pal A, Ghosh S, Mandal M, Pal T (2004) Removal of arsenic using hardened paste of Portland cement: batch adsorption and column study. Water Res 38(17):3780–3790.  https://doi.org/10.1016/j.watres.2004.06.018 CrossRefGoogle Scholar
  44. 44.
    Carrillo A, Drever JI (1998) Adsorption of arsenic by natural aquifer material in the San Antonio- El Triunfo mining area, Baja California, Mexico. Environ Geol 35(4):251–257.  https://doi.org/10.1007/s002540050311 CrossRefGoogle Scholar
  45. 45.
    Maity S, Chakravarty S, Bhattacharjee S, Roy BC (2005) A study on arsenic adsorption on polymetallic sea nodule in aqueous medium. Water Res 39(12):2579–2590.  https://doi.org/10.1016/j.watres.2005.04.054 CrossRefGoogle Scholar
  46. 46.
    Measure Y, Loeppert RH, Kramer TA (2007) Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum: iron hydroxides. Environ Sci Technol 41(3):837–842.  https://doi.org/10.1021/es061160z CrossRefGoogle Scholar
  47. 47.
    Zhang Y, Yang M, Dou X-M, He H, Wang D-S (2005) Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: role of surface properties. Environ Sci Technol 39(18):7246–7253.  https://doi.org/10.1021/es050775d CrossRefGoogle Scholar
  48. 48.
    Villa MV, Sánchez-Martín MJ, Sánchez-Camazano M (1999) Hydrotalcites and organo-hydrotalcites as sorbents for removing pesticides from water. J. Environ. Sci. Health B 34(3):509–525.  https://doi.org/10.1080/03601239909373211 CrossRefGoogle Scholar
  49. 49.
    Lenoble V, Laclautre C, Deluchat V, Serpaud B, Bollinger J-C (2005) Arsenic removal by adsorption on iron(III) phosphate. J Hazard Mater 123(1–3):262–268.  https://doi.org/10.1016/j.jhazmat.2005.04.005 CrossRefGoogle Scholar
  50. 50.
    GillhamRW O’Hannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Groundwater 32(6):958–967.  https://doi.org/10.1111/j.1745-6584.1994.tb00935.x CrossRefGoogle Scholar
  51. 51.
    Jang M, Shin EW, Park JK, Choi SI (2003) Mechanisms of arsenate adsorption by highly-ordered nano-structured silicate media impregnated with metal oxides. Environ Sci Technol 37(21):5062–5070.  https://doi.org/10.1021/es0343712 CrossRefGoogle Scholar
  52. 52.
    Wu J-S, Liu C-H, Chu KH, Suen S-Y (2008) Removal of cationic dye methyl violet 2B from water by cation exchange membranes. J Membr Sci 309(1–2):239–245.  https://doi.org/10.1016/j.memsci.2007.10.035 CrossRefGoogle Scholar
  53. 53.
    Bhatnagar A, Sillanpää M (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—a short review. Adv Coll Interface Sci 152(1–2):26–38.  https://doi.org/10.1016/j.cis.2009.09.003 CrossRefGoogle Scholar
  54. 54.
    Muñoz JS, Gonzalo A, Valiente M (2002) Arsenic adsorption by Fe(III)-loaded open-celled cellulose sponge. Thermodynamic and selectivity aspects. Environ Sci Technol 36(15):3405–3411.  https://doi.org/10.1021/es020017c CrossRefGoogle Scholar
  55. 55.
    Pokhrel D, Viraraghavan T (2006) Arsenic removal from an aqueous solution by a modified fungal biomass. Water Res 40(3):549–552.  https://doi.org/10.1016/j.watres.2005.11.040 CrossRefGoogle Scholar
  56. 56.
    El-Khaiary MI (2007) Kinetics and mechanism of adsorption of methylene blue from aqueous solution by nitric-acid treated water hyacinth. J Hazard Mater 147(1–2):28–36.  https://doi.org/10.1016/j.jhazmat.2006.12.058 CrossRefGoogle Scholar
  57. 57.
    Wasiuddin NM, Tango M, Islam MR (2002) A novel method for arsenic removal at low concentrations. Energy Sources 24:1031–1041.  https://doi.org/10.1080/00908310290086914 CrossRefGoogle Scholar
  58. 58.
    Vohla C, Kõiv M, Bavor HJ, Chazarenc F, Mander Ü (2011) Filter materials for phosphorus removal from wastewater in treatment wetlands—a review. Ecol Eng 37:70–89.  https://doi.org/10.1016/j.ecoleng.2009.08.003 CrossRefGoogle Scholar
  59. 59.
    Chazarenc F, Kacem M, Gerente C, Andres Y (2008) Active filters: a mini-review on the use of industrial by-products for upgrading phosphorus removal from treatment wetlands. In Proceedings of the 11th international conference on wetland systems for water pollution control. Indore: International Water AssociationGoogle Scholar
  60. 60.
    Claveau-Mallet D, Lida F, Comeau Y (2015) Improving phosphorus removal of conventional septic tanks by a recirculating steel slag filter. Water Qual Res J 50(3):211–218.  https://doi.org/10.2166/wqrjc.2015.045 CrossRefGoogle Scholar
  61. 61.
    Kõiv M, Mahadeo K, Brient S, Claveau-Mallet D, Comeau Y (2016) Treatment of fish farm sludge supernatant by aerated filter beds and steel slag filters—effect of organic loading rate. Ecol Eng 94:190–199.  https://doi.org/10.1016/j.ecoleng.2016.05.060 CrossRefGoogle Scholar
  62. 62.
    Penn CJ, McGrath JM, Rounds E, Fox G, Heeren D (2012) Trapping phosphorus in runoff with a phosphorus removal structure. J Environ Qual 41:672–679.  https://doi.org/10.2134/jeq2011.0045 CrossRefGoogle Scholar
  63. 63.
    Barca C, Troesch S, Meyer D, Drissen P, Andres Y, Chazarenc F (2012) Steel slag filters to upgrade phosphorus removal in constructed wetlands: two years of field experiments. Environ Sci Technol 47:549–556.  https://doi.org/10.1021/es303778t CrossRefGoogle Scholar
  64. 64.
    Motz H, Geiseler J (2001) Products of steel slags an opportunity to save natural resources. Waste Manag 21(3):285–293.  https://doi.org/10.1016/S0956-053X(00)00102-1 CrossRefGoogle Scholar
  65. 65.
    Deja J (2000) Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cem Concr Res 32:1971–1979.  https://doi.org/10.1016/S0008-8846(02)00904-3 CrossRefGoogle Scholar
  66. 66.
    Dimitrova SV, Mehanjiev D-R (2000) Interaction of blast-furnace slag with heavy metal ions in water solutions. Water Res 34:1957–1961.  https://doi.org/10.1016/S0043-1354(99)00328-0 CrossRefGoogle Scholar
  67. 67.
    Kang WH, Hwang I, Park JY (2006) Dechlorination of trichloroethylene by a steel converter slag amended with Fe(II). Chemosphere 62:285–293.  https://doi.org/10.1016/j.chemosphere.2005.05.011 CrossRefGoogle Scholar
  68. 68.
    Drizo A, Forget C, Chapuis RP, Comeau Y (2006) Phosphorus removal by electric arc furnace steel slag and serpentinite. Water Res 40:1547–1554.  https://doi.org/10.1016/j.watres.2006.02.001 CrossRefGoogle Scholar
  69. 69.
    Korkusuz EA, Beklioglu M, Demirer GN (2007) Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application. Biores Technol 98:2089–2101.  https://doi.org/10.1016/j.biortech.2006.08.027 CrossRefGoogle Scholar
  70. 70.
    Shilton AN, Elmetri I, Drizo A, Pratt S (2006) Phosphorus removal by an “active” slag filter-a decade of full-scale experience. Water Res 40:113–118.  https://doi.org/10.1016/j.watres.2005.11.002 CrossRefGoogle Scholar
  71. 71.
    Jha VK, Kameshima A, Nakajima A, Okada K (2004) Hazardous ions uptake behavior of thermally activated steel-making slag. J Hazard Mater B 114:139–144.  https://doi.org/10.1016/j.jhazmat.2004.08.004 CrossRefGoogle Scholar
  72. 72.
    Cha W, Kim J, Choi H (2006) Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment. Water Res 40:1034–1042.  https://doi.org/10.1016/j.watres.2005.12.039 CrossRefGoogle Scholar
  73. 73.
    Oguz E (2004) Removal of phosphate from aqueous solution with blast furnace slag. J Hazard Mater B144:131–137.  https://doi.org/10.1016/j.jhazmat.2004.07.010 CrossRefGoogle Scholar
  74. 74.
    Xue Y, Hou H, Zhu S (2009) Competitive adsorption of copper (II), cadmium (II), lead (II) and zinc (II) onto basic oxygen furnace slag. J Hazard Mater 162:391–401.  https://doi.org/10.1016/j.jhazmat.2008.05.072 CrossRefGoogle Scholar
  75. 75.
    Luukkonen T, Runtti H, Niskanen M, Tolonen E-T, Sarkkinen M, Kemppainen K, Rämö J, Lassi U (2015) Simultaneous removal of Ni(II), As(III), and Sb (III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers. J Environ Manag 166:579–588.  https://doi.org/10.1016/j.jenvman.2015.11.007 CrossRefGoogle Scholar
  76. 76.
    Oh C, Rhe S, Oh M, Park J (2012) Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag. J Hazard Mater 213–214:147–155.  https://doi.org/10.1016/j.jhazmat.2012.01.074 CrossRefGoogle Scholar
  77. 77.
    Kanel SR, Choi H, Kim J-Y, Vigneswaran S, Shim GW (2006) Removal of arsenic(III) from groundwater using low-cost industrial by-products—blast furnace slag. Water Qual Res J Can 41(2):130–139Google Scholar
  78. 78.
    Ahh JS, Chon C-M, Moon H-S, Kim K-W (2003) Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems. Water Res 37:2478–2488.  https://doi.org/10.1016/S0043-1354(02)00637-1 CrossRefGoogle Scholar
  79. 79.
    Jovanovic BM, Vukasinic-Pesic VL, Veljovic DN, Rajakovic L (2011) Arsenic removal from water low-cost adsorbents- a comparative study. J Serb Chem Soc 76(10):1437–1452.  https://doi.org/10.2298/JSC101029122J CrossRefGoogle Scholar
  80. 80.
    Kanel SR, Choi H (2017) Removal of arsenic from groundwater by industrial byproducts and its comparison with zero-valent iron. J Hazard Toxic Radioact Waste.  https://doi.org/10.1061/%28ASCE%29HZ.2153-5515.0000349 Google Scholar
  81. 81.
    Claveau-Mallet D, Wallace S, Comeau Y (2013) Removal of phosphorus, fluoride, and metals from a gypsum mining leachate using steel slag filters. Water Res 47:1512–1520.  https://doi.org/10.1016/j.watres.2012.11.048 CrossRefGoogle Scholar
  82. 82.
    Yu J, Liang W, Wang L, Li F, Zou Y, Wang H (2015) Phosphate removal from domestic wastewater using thermally modified steel slag. J Environ Sci 31:81–88.  https://doi.org/10.1016/j.jes.2014.12.007 CrossRefGoogle Scholar
  83. 83.
    Xue Y, Hou H, Zhu S (2009) Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. J Hazard Mater 162:973–980.  https://doi.org/10.1016/j.jhazmat.2008.05.131 CrossRefGoogle Scholar
  84. 84.
    Mercado-Borrayo BM, Schouwenaars R, González-Chávez JL, Ramirez-Zamora RM (2013) Multi-analytical assessment of iron and steel slag characteristics to estimate the removal of metalloids from contaminated water. J Environ Sci Health A 48:887–895.  https://doi.org/10.1080/10934529.2013.761492 CrossRefGoogle Scholar
  85. 85.
    Genc A, Oguz A (2010) Sorption of acid dyes from aqueous solution by using non-ground ash and slag. Desalination 264:78–83.  https://doi.org/10.1016/j.desal.2010.07.007 CrossRefGoogle Scholar
  86. 86.
    Xue Y, Hou H, Zhu S (2009) Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: isotherm and kinetic study. Chem Eng J 147:272–279.  https://doi.org/10.1016/j.cej.2008.07.017 CrossRefGoogle Scholar
  87. 87.
    Jain AK, Gupta VK, Bhatnagar A (2003) Utilization of industrial waste products as adsorbents for the removal of dyes. J Hazard Mater 101(1):31–42.  https://doi.org/10.1016/S0304-3894(03)00146-8 CrossRefGoogle Scholar
  88. 88.
    Nasuha N, Ismai S, Hameed BH (2016) Activated electric arc furnace slag as an efficient and reusable heterogeneous Fenton-like catalyst for the degradation of Reactive Black 5. J Taiwan Inst Chem Eng 67:235–243.  https://doi.org/10.1016/j.jtice.2016.07.023 CrossRefGoogle Scholar
  89. 89.
    Zhang YJ, Liu LC, Ni LL, Wang BL (2013) A facile and low-cost synthesis of granulated blast furnace slag-based cementitious material coupled with a Fe2O3 catalyst for treatment of dye wastewater. Appl Catal B 138–139:9–16.  https://doi.org/10.1016/j.apcatb.2013.02.025 CrossRefGoogle Scholar
  90. 90.
    Tsai TT, Kao CM, Hong A (2009) Treatment of tetrachloroethylene-contaminated groundwater by surfactant-enhanced persulfate/BOF slag oxidation—a laboratory feasibility study. J Hazard Mater 171:571–576.  https://doi.org/10.1016/j.jhazmat.2009.06.036 CrossRefGoogle Scholar
  91. 91.
    Herreros O, Quiroz R, Manzano E, Bou C, Viñals J (1998) Copper extraction from reverberatory and furnace slags by chlorine leaching. Hydrometallurgy 49:87–101.  https://doi.org/10.1016/S0304-386X(98)00010-3 CrossRefGoogle Scholar
  92. 92.
    Turner BD, Binning P, Stipp SLP (2005) Fluoride removal by calcite: evidence for fluorite precipitation and surface adsorption. Environ Sci Technol 24:9561–9568.  https://doi.org/10.1021/es0505090 CrossRefGoogle Scholar
  93. 93.
    Han C, Jiao Y, Wu Q, Yang W, Yang H, Xue X (2016) Kinetics and mechanism of hexavalent chromium removal by basic oxygen furnace slag. J Environ Sci 46:63–71.  https://doi.org/10.1016/j.jes.2015.09.024 CrossRefGoogle Scholar
  94. 94.
    Cundy AB, Hopkinson L, Whitby RLD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400:42–51.  https://doi.org/10.1016/j.scitotenv.2008.07.002 CrossRefGoogle Scholar
  95. 95.
    Tuutijärvi T, Lu J, Sillanpää M, Chen G (2009) As(V) adsorption on maghemite nanoparticles. J Hazard Mater 166:1415–1420.  https://doi.org/10.1016/j.jhazmat.2008.12.069 CrossRefGoogle Scholar
  96. 96.
    Chandra V, Park J, Chun Y, Lee JW, Hwang I-C, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7):3979–3986.  https://doi.org/10.1021/nn1008897 CrossRefGoogle Scholar
  97. 97.
    de la García-Soto FMM, Camacho ME (2009) Boron removal by means of adsorption processes with magnesium oxide- Modelization and mechanism. Desalination 249:626–634.  https://doi.org/10.1016/j.desal.2008.11.016 CrossRefGoogle Scholar
  98. 98.
    Fendorf S, Eick M, Grossl P, Sparks D (1997) Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ Sci Technol 31(2):315–320.  https://doi.org/10.1021/es950653t CrossRefGoogle Scholar
  99. 99.
    Grossl P, Eick M, Sparks D, Goldberg S, Aiinsworth CC (1997) Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ Sci Technol 31(2):321–326.  https://doi.org/10.1021/es950654l CrossRefGoogle Scholar
  100. 100.
    Dimitrova SV (1996) Metal sorption on blast-furnace slag. Water Res 30:228–232.  https://doi.org/10.1016/0043-1354(95)00104-S CrossRefGoogle Scholar
  101. 101.
    Dimitrova SV, Mehamjiev DR (1999) Interaction of blast-furnace slag with heavy metal ions in water solutions. Water Res 34(6):1957–1961.  https://doi.org/10.1016/S0043-1354(99)00328-0 CrossRefGoogle Scholar
  102. 102.
    Zhou YF, Haynes RJ (2010) Sorption of heavy metals by inorganic and organic components of solid wastes: significance to use of wastes as low-cost adsorbents and immobilizing agents. Crit Rev Environ Sci Technol 40:909–977.  https://doi.org/10.1080/10643380802586857 CrossRefGoogle Scholar
  103. 103.
    Zhang F-S, Itoh H (2005) Iron oxide-loaded slag for arsenic removal from aqueous system. Chemosphere 60:319–325.  https://doi.org/10.1016/j.chemosphere.2004.02.027 CrossRefGoogle Scholar
  104. 104.
    Islam M, Patel R (2011) Thermal activation of basic oxygen furnace slag and evaluation of its fluoride removal efficiency. Chem Eng J 169:68–77.  https://doi.org/10.1016/j.cej.2011.02.054 CrossRefGoogle Scholar
  105. 105.
    Srivastava SK, Gupta VK, Mohan D (1997) Removal of lead and chromium by activated slag—a blast-furnace waste. J Environ Eng 123(5):461–468.  https://doi.org/10.1061/(ASCE)0733-9372(1997)123:5(461) CrossRefGoogle Scholar
  106. 106.
    Xiong J, He Z, Mahood Q, Liu D, Yang X, Islam E (2008) Phosphate removal from solution using steel slag through magnetic separation. J Hazard Mater 152:211–215.  https://doi.org/10.1016/j.jhazmat.2007.06.103 CrossRefGoogle Scholar
  107. 107.
    Mishra PC, Patel RK (2009) Removal of lead and zinc ions from water by low-cost adsorbents. J Hazard Mater 168:319–325.  https://doi.org/10.1016/j.jhazmat.2009.02.026 CrossRefGoogle Scholar
  108. 108.
    Mercado-Borrayo BM, Schouwenaars R, Litter MI, Montoya-Bautista CV, Ramírez-Zamora RM (2014) Chapter 5. Metallurgical slag as an efficient and economical adsorbent of arsenic. Water Reclamation and Sustainability. ElsevierGoogle Scholar
  109. 109.
    Mercado-Borrayo BM, Schouwenaars R, Litter MI, Ramirez-Zamora RM (2014) Adsorption of boron by metallurgical slag and iron nanoparticles. Adsorpt Sci Technol 32(2–3):117–123.  https://doi.org/10.1260/0263-6174.32.2-3.117 CrossRefGoogle Scholar
  110. 110.
    Nohynek GJ, Fautz R, Benech-Kieffer F, Toutain H (2004) Toxicity and human health risk of hair dyes. Food Chem Toxicol 42(4):517–543.  https://doi.org/10.1016/j.fct.2003.11.003 CrossRefGoogle Scholar
  111. 111.
    Ramakrishna KR, Viraraghavan T (1997) Use of slag for dye removal. Waste Manag 17(8):483–488.  https://doi.org/10.1016/S0956-053X(97)10058-7 CrossRefGoogle Scholar
  112. 112.
    Gupta VK, Srivastava SK, Mohan D (1997) Equilibrium uptake, sorption dynamics, process optimization and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag. Ind Eng Chem Res 36:2207–2218.  https://doi.org/10.1021/ie960442c CrossRefGoogle Scholar
  113. 113.
    Gao H, Song Z, Zhang W, Yang X, Wang X, Wang D (2017) Synthesis of highly effective absorbents with waste quenching blast furnace slag to remove methyl orange from aqueous solution. J Environ Sci 53:68–77.  https://doi.org/10.1016/j.jes.2016.05.014 CrossRefGoogle Scholar
  114. 114.
    Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidattion processes (AOP) from water purification and recovery. Catal Today 53(1):51–59.  https://doi.org/10.1016/S0920-5861(99)00102-9 CrossRefGoogle Scholar
  115. 115.
    Pignatello J, Oliveros E, MacKay A (2007) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84.  https://doi.org/10.1080/10643380500326564 CrossRefGoogle Scholar
  116. 116.
    Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater B98:33–50.  https://doi.org/10.1016/S0304-3894(02)00282-0 CrossRefGoogle Scholar
  117. 117.
    Mirzaei A, Chen Z, Haghighat F, Yerushalmi L (2017) Removal of pharmaceutical from water by homo/heterogonous Fenton-type-processes—a review. Chemosphere 174:665–688.  https://doi.org/10.1016/S0304-3894(02)00282-0 CrossRefGoogle Scholar
  118. 118.
    Hartmann M, Kullmann S, Keller H (2010) Wastewater treatment with heterogeneous Fenton-type catalyst based on porous materials. J Mater Chem 20:9002–9017.  https://doi.org/10.1039/C0J00577K CrossRefGoogle Scholar
  119. 119.
    Yaping Z, Jiangyong H (2008) Photo-Fenton degradation of 17β-estradion in presence of α-FeOOHR and H2O2. Appl Catal B 78:250–258.  https://doi.org/10.1016/j.apcatb.2007.09.026 CrossRefGoogle Scholar
  120. 120.
    Shi J, Kuwahara Y, An T, Yamashita H (2017) The fabrication of TiO2 supported on slag-made calcium silicate as low-cost photocatalyst with high adsorption ability for the degradation of dye pollutants in water. Catal Today 281:21–28.  https://doi.org/10.1016/j.cattod.2016.03.039 CrossRefGoogle Scholar
  121. 121.
    Chiou C-S, Chang C-F, Chang C-T, Shie J-L, Chen Y-H (2006) Mineralization of Reactive Black 5 in aqueous solution by basic oxygen furnace slag in the presence of hydrogen peroxide. Chemosphere 62:788–795.  https://doi.org/10.1016/j.chemosphere.2005.04.072 CrossRefGoogle Scholar
  122. 122.
    Tsai TT, Kao CM, Wang JY (2011) Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation. Chemosphere 83:687–692.  https://doi.org/10.1016/j.chemosphere.2011.02.023 CrossRefGoogle Scholar
  123. 123.
    Lee J-M, Kim J-H, Chang Y-Y, Chang Y-S (2009) Steel dust catalysis for Fenton-like oxidation of polychlorinated dibenzo-p-dioxins. J Hazard Mater 163:222–230.  https://doi.org/10.1016/j.jhazmat.2008.06.081 CrossRefGoogle Scholar
  124. 124.
    Chiou C-S (2007) Application of steel waste with UV/H2O2 to mineralize 2-naphthalenesulfonate in aqueous solution. Sep Purif Technol 55:110–116.  https://doi.org/10.1016/j.seppur.2006.11.006 CrossRefGoogle Scholar
  125. 125.
    Gorai B, Jama RK, Premchad (2003) Characteristics and utilization of copper slag—a review. Resour Conserv Recycl 39:299–313.  https://doi.org/10.1016/S0921-3449(02)00171-4 CrossRefGoogle Scholar
  126. 126.
    Kiyak B, Özer A, Altundogan HS, Erdem M, Tümen K (1999) Cr(VI) reduction in aqueous solutions by using copper smelter slag. Waste Manag 19:333–338.  https://doi.org/10.1016/S0956-053X(99)00141-5 CrossRefGoogle Scholar
  127. 127.
    Arzate-Salgado S-Y, Morales-Pérez A-A, Solís-López M, Ramírez-Zamora R-M (2016) Evaluation of metallurgical slag as a Fenton-type photocatalyst for the degradation of an emerging pollutant: diclofenac. Catal Today 266:126–135.  https://doi.org/10.1016/j.cattod.2015.09.026 CrossRefGoogle Scholar
  128. 128.
    Huanosta-Gutiérrez T, Dantas RF, Ramírez-Zamora RM, Esplugas S (2012) Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water. J Hazard Mater 213–214:325–330.  https://doi.org/10.1016/j.jhazmat.2012.02.004 CrossRefGoogle Scholar
  129. 129.
    Solís-López M, Duran-Moreno A, Rigas F, Morales AA, Navarrete M, Ramírez-Zamora RM (2014) Chapter 9. Assessment of copper slag as a sustainable Fenton-type photocatalyst for water disinfection. Water Reclamation and Sustainability. ElsevierGoogle Scholar
  130. 130.
    Schouwenaars R, Montoya-Bautista CV, Isaacs-Páez ED, Solís-López M, Ramírez-Zamora RM (2017) Removal of arsenic III and V from laboratory solutions and contaminated groundwater by metallurgical slag through anion-induced precipitation. Environ Sci Pollut Res  https://doi.org/10.1007/s11356-017-0120-1

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Instituto de Ingeniería, Coordinación de Ingeniería AmbientalUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  2. 2.Departamento de Química Analítica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  3. 3.Departamento de Materiales y Manufactura, Facultad de IngenieríaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations