Developing a Life Cycle Inventory for Rare Earth Oxides from Ion-Adsorption Deposits: Key Impacts and Further Research Needs

Abstract

Rare earth production from ion-adsorption deposits constitutes an important rare earth production route, and the most important production route for heavy rare earths such as dysprosium and terbium. The demand for dysprosium has experienced substantial growth in recent years, mainly due to its use in neodymium–iron–boron (Nd–Fe–B) magnets, the demand for which is increasing largely due to their use in efficient motor applications. Hence, the analysis of environmental impacts associated with rare earth mining and processing is gaining importance. In this study, a life cycle inventory for rare earth production from ion-adsorption deposits was compiled through a detailed analysis of the literature and with help from industry experts. A detailed review of the literature on environmental impacts associated with the mining process was also conducted, and impacts not covered by the current impact assessment methods are discussed. Despite the detailed study, data uncertainties remain. Therefore, recommendations for further research are given, including further investigations into the fate of emissions from in situ leaching of rare earths in the proximity of the mining site, and development of the methods used to assess resource extraction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    ISO: International Organization for Standardization.

  2. 2.

    CML: Centrum voor Milieuwetenschappen, (Institute of Environmental Sciences, Leiden University).

  3. 3.

    Assuming 10–30% above the theoretical consumption.

  4. 4.

    APOS: allocation at point of substitution (see website of the database provider for details - http://www.ecoinvent.org).

  5. 5.

    (version 4.4. of January 2015, as implemented in OpenLCA method pack 1.5.5, updated by Greendelta as described in [51]).

  6. 6.

    Please note that the figures are not directly comparable, since they refer to different processing routes for different types of ores, and produce different mixes of rare earth oxides.

  7. 7.

    See [51] for details on updates by Greendelta.

  8. 8.

    JRC: Joint Research Centre (of the European Commission).

  9. 9.

    The ILCD midpoint method, category ADP reserve base, contains characterization factors for rare earths, but they are generic for all REE (except for yttrium, which has been assigned a different factor) [54 ].

References

  1. 1.

    Waide P, Brunner CU (2011) Energy-efficiency policy opportunities for electric motor-driven systems: OECD/IEA. http://www.iea.org/Textbase/npsum/ee_for_electricsystemssum.pdf. Accessed 29 July 2015

  2. 2.

    Buchert M, Manhart A, Sutter J (2013) Untersuchung zu Seltenen Erden: Permanent magnete im industriellen Einsatz in Baden-Württemberg: Öko-Institut e. V., Freiburg

  3. 3.

    Schüler D, Buchert M, Liu R et al (2011) Study on rare earths & their recycling: Final Report for the Greens/EFA Group in the European Parliament, Darmstadt

  4. 4.

    Althaus H-J, Chudacoff M, Hischier R et al (2007) Life cycle inventories of chemicals: Ecoinvent Report No 8. Data V2.0, Dübendorf

  5. 5.

    Sprecher B, Xiao Y, Walton A et al (2014) Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets. Environ Sci Technol 48:3951–3958. doi:10.1021/es404596q

    CAS  Article  Google Scholar 

  6. 6.

    Koltun P, Tharumarajah A (2014) Life cycle impact of rare earth elements. ISRN Metall 1–2:1–10. doi:10.1155/2014/907536

    Article  Google Scholar 

  7. 7.

    Browning C, Northey S, Haque N et al (2016) Life cycle assessment of rare earth production from monazite. REWAS 2016: towards materials resource sustainability. The Minerals, Metals & Materials Society, Warrendale; Wiley, Hoboken. doi:10.1002/9781119275039.ch12

    Google Scholar 

  8. 8.

    Graf R (2012) Ökobilanzielle Betrachtung von Seltenen Erden: Diplomarbeit. Universität Stuttgart, Stuttgart

  9. 9.

    Zaimes GG, Hubler BJ, Wang S et al (2015) Environmental life cycle perspective on rare earth oxide production. Sustain Chem Eng 3:237–244. doi:10.1021/sc500573b

    CAS  Article  Google Scholar 

  10. 10.

    Peiró LT, Méndez GV (2013) Material and energy requirement for rare earth production. JOM 65(10):1327–1340. doi:10.1007/s11837-013-0719-8

    CAS  Article  Google Scholar 

  11. 11.

    Yang XJ, Lin A, Li X-L et al (2013) China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ Dev 8:131–136. doi:10.1016/j.envdev.2013.03.006

    Article  Google Scholar 

  12. 12.

    Vahidi E, Navarro J, Zhao F (2016) An initial life cycle assessment of rare earth oxides production from ion-adsorption clays. Res Conserv Recycl 113:1–11. doi:10.1016/j.resconrec.2016.05.006

    Article  Google Scholar 

  13. 13.

    DIN (2006) Environmental management—Life Cycle assessment—Requirements and guidelines (ISO 14044:2006) [Umweltmanagement—Ökobilanz—Anforderungen und Anleitungen (ISO 14044:2006)]; German and English version EN ISO 14044:2006

  14. 14.

    DIN EN ISO (2006) Environmental management—Life cycle assessment—Principles and Framework (ISO 14040:2006) [Umweltmanagement—Ökobilanz—Grundsätze und Rahmenbedingungen (ISO 14040:2006)]; German and English version EN ISO 14040:2006

  15. 15.

    Gupta CK, Krishnamurthy N (2005) Extractive metallurgy of rare earths. CRC Press, Boca Raton

    Google Scholar 

  16. 16.

    Voßenkaul D, Stoltz NB, Meyer FM et al (2015) Extraction of rare earth elements from non-Chinese ion adsorption clays: Proceedings of EMC 2015

  17. 17.

    Papangelakis V (2014) Recovery of rare earth elements from clay minerals: ERES2014: 1st European Rare Earth Resources Conference. Milos, 04–07 Sept 2014

  18. 18.

    Tian J, Tang X, Yin J (2013) Enhanced leachability of a lean weathered crust elution-deposited rare-earth ore: effects on Sesbania gum filter aid reagent. Metall Mater Trans 44(5):1070. doi:10.1007/s11663-013-9871-3

    CAS  Article  Google Scholar 

  19. 19.

    Krishnamurthy N, Gupta CK (2016) Extractive metallurgy of rare earths, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  20. 20.

    Haschke M (2016) In-situ recovery of critical technology elements: “SYMPHOS 2015”, 3rd International Symposium on Innovation and Technology in the Phosphate Industry. Procedia Engineering (138): 248–257

    CAS  Article  Google Scholar 

  21. 21.

    Packey DJ (2016) The impact of unregulated ionic clay rare earth mining in China. Resour Policy 48:112–116. doi:10.1016/j.resourpol.2016.03.003

    Article  Google Scholar 

  22. 22.

    Lartigue-Peyrou F (2016) Rare earth industry expert statement. Personal communication via e-mail, 6.07.2016

  23. 23.

    Navarro J, Zhao F (2014) Life-cycle assessment of the production of rare-earth elements for energy applications: a review. Front Energy Res. doi:10.3389/fenrg.2014.00045

    Article  Google Scholar 

  24. 24.

    Yanfei X, Zongyu F, Xiaowei H et al (2016) Recovery of rare earth from the ion-adsorption type rare earths ore: II. Compd Leach Hydrometall 163:83–90. doi:10.1016/j.hydromet.2016.03.016

    CAS  Article  Google Scholar 

  25. 25.

    Jun T (2011) Extraction of rare earths from the leach liquor of the weathered crust elution-deposited rare earth ore with non-precipitation. Int J Min Process 98:125–131. doi:10.1016/j.minpro.2010.11.007

    CAS  Article  Google Scholar 

  26. 26.

    Chi R, Zhou Z, Xu Z et al (2003) Solution-chemistry analysis of ammonium bicarbonate consumption in rare-earth-element precipitation. Metall Mater Trans B 34(5):611–617. doi:10.1007/s11663-003-0031-z

    Article  Google Scholar 

  27. 27.

    Luo X-P, Zou L-P, Ma P-L et al (2015) Removing aluminum from a low-concentration lixivium of weathered crust elution-deposited rare earth ore with neutralizing hydrolysis. Rare Met. doi:10.1007/s12598-015-0621-3

    Article  Google Scholar 

  28. 28.

    Packey DJ (2016) Question re. composition of ionic deposits given in paper. Personal communication via e-mail, 12.07.2016

  29. 29.

    Lin G, Zhang L, Yin S et al (2015) Study on the calcination experiments of rare earth carbonates using microwave heating. Green Process Synth. doi:10.1515/gps-2015-0040

    Article  Google Scholar 

  30. 30.

    Calvo G, Mudd G, Valero A et al (2016) Decreasing ore grades in global metallic mining, a theoretical issue or a global reality? ECI Conference (Abstract)—life cycle assessment and other assessment tools for waste management and resource optimization, Cetraro, Calabria

    Article  Google Scholar 

  31. 31.

    Jun T (2013) Process optimization on leaching of a lean weathered crust elution-deposited rare earth ores. Int J Min Process 119:83–88. doi:10.1016/j.minpro.2013.01.004

    CAS  Article  Google Scholar 

  32. 32.

    Yanfei X, Zongyu F, Xiaowei H et al (2015) Recovery of rare earths from weathered crust elution-deposited rare earth ore without ammonia-nitrogen pollution: I. Leaching with magnesium sulfate. Hydrometallurgy 153:58–65. doi:10.1016/j.hydromet.2015.02.011

    CAS  Article  Google Scholar 

  33. 33.

    Xie F, Zhang TA, Dreisinger D et al (2014) A critical review on solvent extraction of rare earths from aqueous solutions. Min Eng 56:10–28. doi:10.1016/j.mineng.2013.10.021

    CAS  Article  Google Scholar 

  34. 34.

    Leveque A (2014) Extraction and separation of rare earths. EREAN Summer School, Leuven

    Google Scholar 

  35. 35.

    Chun-Sheng L, Fu-Xiang C (2016) Green separation of rare earth resources in China: State Key Lab of Rare Earth Materials Chemistry and Applications of Peking University; Minmetals (Beijing) Research Institute of RE Co., Ltd

  36. 36.

    Elwert T, Goldmann D, Schmidt F et al (2013) Hydrometallurgical recycling of sintered NdFeB magnets. World Metall 66(4):209–219

    CAS  Google Scholar 

  37. 37.

    Sokolova TA, Alekseeva SA (2008) Adsorption of sulfate ions by soils (a review). Eurasian Soil Sci 41(2):140–148. doi:10.1134/S106422930802004X

    Article  Google Scholar 

  38. 38.

    EC-JRC (2010) International reference life cycle data system (ILCD) handbook—general guide for life cycle assessment—detailed guidance, 1st edn. Publications Office of the European Union, Luxembourg

  39. 39.

    Strokal M, Yang H, Zhang Y et al (2014) Increasing eutrophication in the coastal seas of China from 1970 to 2050. Mar Pollut Bull 85(1):123–140. doi:10.1016/j.marpolbul.2014.06.011

    CAS  Article  Google Scholar 

  40. 40.

    Le C, Zha Y, Li Y et al (2010) Eutrophication of lake waters in China: cost, causes, and control. Environ Manag 45(4):662–668. doi:10.1007/s00267-010-9440-3

    CAS  Article  Google Scholar 

  41. 41.

    Conley DJ, Paerl HW, Howarth RW et al (2009) Ecology. Controlling eutrophication: nitrogen and phosphorus. Science 323(5917):1014–1015. doi:10.1126/science.1167755

    CAS  Article  Google Scholar 

  42. 42.

    Yi Q, Wang X, Wang T et al (2014) Eutrophication and nutrient limitation in the aquatic zones around Huainan coal mine subsidence areas, Anhui, China. Water Sci Technol 70(5):878–887. doi:10.2166/wst.2014.293

    CAS  Article  Google Scholar 

  43. 43.

    Huo S, Ma C, Xi B et al (2013) Establishing eutrophication assessment standards for four lake regions, China. J Environ Sci 25:2014–2022

    CAS  Article  Google Scholar 

  44. 44.

    Linarić M, Markić M, Sipos L (2013) High salinity wastewater treatment. Water Sci Technol 68(2013):1400–1405. doi:10.2166/wst.2013.376

    CAS  Article  Google Scholar 

  45. 45.

    Cañedo-Argüelles M, Kefford BJ, Piscart C et al (2013) Salinisation of rivers: an urgent ecological issue. Environ Pollut 173:157–167. doi:10.1016/j.envpol.2012.10.011

    CAS  Article  Google Scholar 

  46. 46.

    Humsa TZ (2015) Impact of rare earth mining and processing on soil and water environment at Chavara, Kollam, Kerala: a case study. Proc Earth Planet Sci 11:566–581. doi:10.1016/j.proeps.2015.06.059

    CAS  Article  Google Scholar 

  47. 47.

    Vuori K-M (1995) Direct and indirect effects of iron on river ecosystems. Ann Zool Fenn 32:317–329

    Google Scholar 

  48. 48.

    Tian J, Chi R-A, Yin J-Q (2010) Leaching process of rare earths from weathered crust elution-deposited rare earth ore. Trans Nonferrous Met Soc China 20:892–896. doi:10.1016/S1003-6326(09)60232-6

    CAS  Article  Google Scholar 

  49. 49.

    Vahidi E, Zhao F (2016) Life cycle analysis for solvent extraction of rare earth elements from aqueous solutions. REWAS 2016: Towards materials resource sustainability. The Minerals, Metals & Materials Society, Warrendale; Wiley, Hoboken, pp 113–120

  50. 50.

    Schmidt G (2013) Description and critical environmental evaluation of the REE refining plant LAMP near Kuantan/Malaysia—Radiological and non-radiological environmental consequences of the plant’s operation and its wastes. Report, prepared on behalf of NGO “Save Malaysia, Stop Lynas” (SMSL), Kuantan/Malaysia. https://www.oeko.de/oekodoc/1628/2013-001-en.pdf

  51. 51.

    Acero AP, Rodríguez C, Ciroth A (2017) LCIA methods Impact assessment methods in Life Cycle Assessment and their impact categories: 1.5.6. http://www.openlca.org/download/

  52. 52.

    Sutter J, Merz C (2015) Characterization factors for REE in LCIA method ADP elementary. Personal communication via e-mail, 7.1.2015

  53. 53.

    Walachowicz F, March A, Fiedler S et al (2014) Verbundprojekt: Recycling von Elektromotoren—MORE: Teilprojekt: Ökobilanz der Recyclingverfahren. Projekt gefördert im Rahmen des Programms “Schlüsseltechnologien für die Elektromobilität (STROM) des BMBF

  54. 54.

    van Oers L, de Koning A, Guinée J et al (2002) Abiotic resource depletion in LCA: improving characterization factors for abiotic resource depletion as recommended in the new Dutch LCA Handbook. Institute of Environmental Sciences, Leiden

    Google Scholar 

  55. 55.

    Long KR, Van Gosen BS, Foley NK, Cordier D (2010) The principal rare earth elements deposits of the United States—a summary of domestic deposits and a global perspective. Department of the Interior, US Geological Survey, Reston

    Google Scholar 

  56. 56.

    Guinée J (1995) Development of a methodology for the environmental life-cycle assessment of products: with a case study on margarines. Dissertation, Promotor: Udo, de Haes H.A.

  57. 57.

    EC (2014) Report on critical raw materials for The EU—critical raw materials profiles: For DG Enterprise and Industry

  58. 58.

    USGS (2016) Antimony. Statistics and Information. http://minerals.usgs.gov/minerals/pubs/commodity/antimony. Accessed 29 June 2016

  59. 59.

    Adibi N (2014) Introducing a multi-criteria indicator to better evaluate impacts of rare earth materials production and consumption in life cycle assessment. J Rare Earths 32(3):288–292. doi:10.1016/S1002-0721(14)60069-7

    CAS  Article  Google Scholar 

  60. 60.

    van Oers L, Guinée J (2016) The abiotic depletion potential: background, updates, and future. Resources. doi:10.3390/resources5010016

    Article  Google Scholar 

  61. 61.

    USGS (2016) Clays. Statistics and Information. http://minerals.usgs.gov/minerals/pubs/commodity/clays. Accessed 29 June 2016

  62. 62.

    Palmer MA, Bernhardt ES, Schlesinger WH et al (2010) Mountaintop mining consequences: American Association for the Advancement of Science. Sciencemag 327:148–149. doi:10.1126/science.1180543

    CAS  Article  Google Scholar 

  63. 63.

    van der Welle ME, Roelofs JG, Lamers LP (2008) Multi-level effects of sulphur–iron interactions in freshwater wetlands in The Netherlands. Ecol Effects Diffus Pollut 406(3):426–429. doi:10.1016/j.scitotenv.2008.05.056

    CAS  Article  Google Scholar 

  64. 64.

    Mancini L, Benini L, Sala S (2016) Characterization of raw materials based on supply risk indicators for Europe. Int J Life Cycle Assess. doi:10.1007/s11367-016-1137-2

    Article  Google Scholar 

  65. 65.

    Sonnemann G (2015) From a critical review to a conceptual framework for integrating the criticality of resources into Life Cycle Sustainability Assessment. J Clean Prod 94:20–34. doi:10.1016/j.jclepro.2015.01.082

    Article  Google Scholar 

  66. 66.

    Graedel TE, Harper EM, Nassar NT et al (2015) Criticality of metals and metalloids. Proc Natl Acad Sci USA 112(14):4257–4262. doi:10.1073/pnas.1500415112

    CAS  Article  Google Scholar 

  67. 67.

    Yan C, Jia J, Liao C et al (2006) Rare earth separation in China. Tsinghua Sci Technol 11(2):241–247. doi:10.1016/S1007-0214(06)70183-3

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The research leading to results of this study has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 607411 (MC-ITN EREAN: European Rare Earth Magnet Recycling Network). This publication reflects only the authors’ views, exempting the Community from any liability. Project website: http://www.erean.eu. The authors would like to thank Solvay for enabling the expert interviews and for their help with the compilation of this dataset; Winfried Bulach, Bo Weidema, Lauran van Oers, Mikhail Tyumentsev, and members of the EREAN Steering Group, and two anonymous reviewers for valuable comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rita Schulze.

Additional information

The contributing editor for this article was Markus Reuter.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 70 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schulze, R., Lartigue-Peyrou, F., Ding, J. et al. Developing a Life Cycle Inventory for Rare Earth Oxides from Ion-Adsorption Deposits: Key Impacts and Further Research Needs. J. Sustain. Metall. 3, 753–771 (2017). https://doi.org/10.1007/s40831-017-0139-z

Download citation

Keywords

  • Life cycle assessment
  • In situ leaching
  • Dysprosium
  • Rare earth elements
  • Ion-adsorption deposits