Balomenos E, Panias D, Paspaliaris I (2011) Energy and exergy analysis of the primary aluminum production processes: a review on current and future sustainability. Miner Process Extr Metall Rev 32(2):69–89
CAS
Article
Google Scholar
Klauber C, Gräfe M, Power G (2011) Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy 108(1–2):11–32
CAS
Article
Google Scholar
Liu Z, Li H (2015) Metallurgical process for valuable elements recovery from red mud—a review. Hydrometallurgy 155:29–43
CAS
Article
Google Scholar
Borra CR et al (2016) Recovery of rare earths and other valuable metals from bauxite residue (red mud): a review. J Sustain Metall. doi:10.1007/s40831-016-0068-2
Google Scholar
Pontikes Y, Angelopoulos GN (2013) Bauxite residue in cement and cementitious applications: current status and a possible way forward. Resour Conserv Recycl 73:53–63
Article
Google Scholar
Vangelatos I, Angelopoulos GN, Boufounos D (2009) Utilization of ferroalumina as raw material in the production of ordinary Portland cement. J Hazard Mater 168(1):473–478
CAS
Article
Google Scholar
Evans K (2016) The history, challenges, and new developments in the management and use of bauxite residue. J Sustain Metall. doi:10.1007/s40831-016-0060-x
Google Scholar
Pontikes Y, Boufounos D, Angelopoulos GN (2011) Case studies for the valorisation of Bayer’s process bauxite residue: aggregates, ceramics, glass-ceramics, cement and catalysis. In 2nd international slag valorisation symposium, Leuven
Wang W, Pranolo Y, Cheng CY (2011) Metallurgical processes for scandium recovery from various resources: a review. Hydrometallurgy 108(1–2):100–108
CAS
Article
Google Scholar
Krishnamurthy N, Gupta CK (2015) Resource processing, in extractive metallurgy of rare earths. CRC Press, Boca Raton, pp 235–332
Book
Google Scholar
Ochsenkühn‐Petropoulou M, Tsakanika LA, Lymperopoulou T (2014) Process control of an innovative method for the recovery and separation of rare earths from red mud by different analytical techniques. In: ERES 2014—first European rare earth resources conference, Milos, Greece, 4–7 September 2014
Balomnenos E et al (2014) The ENEXAL bauxite residue treatment process: industrial scale pilot plant results. Light metals 2014. Wiley, Amsterdam, pp 141–147
Chapter
Google Scholar
Binnemans K et al (2015) Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. J Clean Prod 99:17–38
CAS
Article
Google Scholar
Goodenough KM et al (2016) Europe’s rare earth element resource potential: an overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol Rev 72:838–856
Article
Google Scholar
Petrakova O, Klimentenok G, Panov A, Gorbachev S (2014) Application of modern methods for red mud processing to produce rare earth elements. In: Proceedings of the 1st European rare earth resources conference (ERES), Milos, pp 221–229
Binnemans K et al (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22
CAS
Article
Google Scholar
ERECON (2015) Strengthening the European rare earths supply chain: challenges and policy options
European Commission (2014) Report of the Ad hoc working group on defining critical raw materials
Borra CR et al (2015) Leaching of rare earths from bauxite residue (red mud). Miner Eng 76:20–27
CAS
Article
Google Scholar
Davris P et al (2016) Leaching rare earth elements from bauxite residue using Brønsted acidic ionic liquids A2 (Chap. 12). In: De Lima IB, Leal Filho W (eds) Rare earths industry. Elsevier, Amsterdam, pp 183–197
Chapter
Google Scholar
Ochsenkühn-Petropulu M, Lyberopulu T, Parissakis G (1994) Direct determination of landthanides, yttrium and scandium in bauxites and red mud from alumina production. Anal Chim Acta 296(3):305–313
Article
Google Scholar
U.S. Geological Survey (2016) Mineral commodity summaries. U.S. Geological Survey, Reston
Schlinkert D, van den Boogaart KG (2015) The development of the market for rare earth elements: insights from economic theory. Resour Policy 46:272–280
Article
Google Scholar
Golev A et al (2014) Rare earths supply chains: current status, constraints and opportunities. Resour Policy 41:52–59
Article
Google Scholar
www.institut-seltene-erden.org. Accessed on 1 Sept 2016
Ahmad Z (2003) The properties and application of scandium-reinforced aluminum. JOM 55(2):35–39
CAS
Article
Google Scholar
Boudghene Stambouli A, Traversa E (2002) Fuel cells, an alternative to standard sources of energy. Renew Sustain Energy Rev 6(3):295–304
Article
Google Scholar
Ciacchi FT, Badwal SPS, Drennan J (1991) The system Y2O3–Sc2O3–ZrO2: phase characterisation by XRD, TEM and optical microscopy. J Eur Ceram Soc 7(3):185–195
CAS
Article
Google Scholar
Borra CR et al (2016) Smelting of bauxite residue (red mud) in view of iron and selective rare earths recovery. J Sustain Metall 2(1):28–37
Article
Google Scholar
Ochsenkühn-Petropoulou MT et al (2002) Pilot-plant investigation of the leaching process for the recovery of scandium from red mud. Ind Eng Chem Res 41(23):5794–5801
Article
Google Scholar
Ochsenkühn-Petropulu M et al (1996) Recovery of lanthanides and yttrium from red mud by selective leaching. Anal Chim Acta 319(1–2):249–254
Article
Google Scholar
Smirnov DI, Molchanova TV (1997) The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production. Hydrometallurgy 45(3):249–259
CAS
Article
Google Scholar
Wang W, Cheng CY (2011) Separation and purification of scandium by solvent extraction and related technologies: a review. J Chem Technol Biotechnol 86(10):1237–1246
CAS
Article
Google Scholar
Wang W, Pranolo Y, Cheng CY (2013) Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Sep Purif Technol 108:96–102
CAS
Article
Google Scholar
Fulford GD, Lever G, Sato T (1991) Recovery of rare earth elements from sulphurous acid solution by solvent extraction. US patent 5015447 A
Yatsenko SP, Pyagai IN (2010) Red mud pulp carbonization with scandium extraction during alumina production. Theor Found Chem Eng 44(4):563–568
CAS
Article
Google Scholar
Qu Y, Lian B (2013) Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour Technol 136:16–23
CAS
Article
Google Scholar
Davris P et al (2016) Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid. Hydrometallurgy 164:125–135
CAS
Article
Google Scholar
Ochsenkühn-Petropulu M, Lyberopulu T, Parissakis G (1995) Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method. Anal Chim Acta 315(1–2):231–237
Article
Google Scholar
Balomenos E et al (2013) Resource-efficient and economically viable pyrometallurgical processing of industrial ferrous by-products. Waste Biomass Valoriz 5(3):333–342
Article
Google Scholar
Paramguru RK, Rath PC, Misra VN (2004) Trends in red mud utilization—a review. Miner Process Extr Metall Rev 26(1):1–29
Article
Google Scholar
Kumar S, Kumar R, Bandopadhyay A (2006) Innovative methodologies for the utilisation of wastes from metallurgical and allied industries. Resour Conserv Recycl 48(4):301–314
Article
Google Scholar
Liu Y, Naidu R (2014) Hidden values in bauxite residue (red mud): recovery of metals. Waste Manag 34(12):2662–2673
CAS
Article
Google Scholar
Liu W, Yang J, Xiao B (2009) Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. J Hazard Mater 161(1):474–478
CAS
Article
Google Scholar
Xenidis A et al (2011) Reductive smelting of Greek bauxite residues for iron production. In: Lindsay SJ (ed) Light Metals 2011. Wiley, Hoboken, pp 113–117
Google Scholar
Zhu D-Q et al (2012) Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt. J Iron Steel Res Int 19(8):1–5
Article
Google Scholar
Jayshankar K, Mukherjee PS, Bhoi B, Mishra CR (2013) Production of pig iron and Portland slag cement from red mud by application of Novel Thermal Plasma Technique, in Technical proceedings of IBAAS-CHALIECO 2013 international symposium. Nanning, Guangxi
Scrivener KL, Cabiron J-L, Letourneux R (1999) High-performance concretes from calcium aluminate cements. Cem Concr Res 29(8):1215–1223
CAS
Article
Google Scholar
Panias D, Giannopoulou I, Boufounos D (2014) Valorization of alumina red mud for production of geopolymeric bricks and tiles. In: Grandfield J (ed) Light Metals 2014. Wiley, Hoboken, pp 155–159
Google Scholar
Papadopoulos AM (2005) State of the art in thermal insulation materials and aims for future developments. Energy Build 37(1):77–86
Article
Google Scholar
Provis JL, van Deventer JSJ (2009) Geopolymers, structures, processing, properties and industrial applications, 1st edn. Woodhead Publishing Ltd, Abingdon
Google Scholar
He J et al (2013) Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement Concr Compos 37:108–118
CAS
Article
Google Scholar
Ke X et al (2015) One-part geopolymers based on thermally treated red mud/NAOH blends. J Am Ceram Soc 98(1):5–11
CAS
Article
Google Scholar
Ye N et al (2014) Synthesis and characterization of geopolymer from Bayer red mud with thermal pretreatment. J Am Ceram Soc 97(5):1652–1660
CAS
Article
Google Scholar
Hertel T, Blanpain B, Pontikes Y (2016) A proposal for a 100% use of bauxite residue towards inorganic polymer mortar. J Sustain Metall. doi:10.1007/s40831-016-0080-6
Google Scholar
van Riessen A et al (2013) Bayer-geopolymers: an exploration of synergy between the alumina and geopolymer industries. Cement Concr Compos 41:29–33
Article
Google Scholar