Skip to main content

Transforming Enhanced Landfill Mining Derived Gasification/Vitrification Glass into Low-Carbon Inorganic Polymer Binders and Building Products


The current paper reviews the concept of the production of high-added value construction materials produced as part of a zero waste enhanced landfill mining process. The calorific fraction of the excavated waste is concentrated to produce a solid recovered fuel, which is introduced to a gasification/vitrification process to be converted to a synthetic gas, a slag and a metal alloy. The slag is subsequently cooled to produce a glass. The glass is milled and blended with an alkaline silicate solution to produce an inorganic polymer binder. The binder can be used as an alternative for ordinary Portland cement (OPC) in concrete to produce precast construction materials, such as pavers, tiles and wall elements. Pilot industrial production and testing of the durability, environmental footprint and economic feasibility of the process are currently being performed. Traditional OPC based production lines can be used, and when comparing with OPC based concrete, materials with similar to improved properties (e.g. higher hardening rate and higher final strength) can be produced.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Rockström J, Steffen W, Noone K et al (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14:472–475

    Article  Google Scholar 

  2. European Commission (2014) Report on critical raw materials for the EU: report of the Ad hoc Working Group on defining critical raw materials. Accessed 30 June 2016

  3. Provis JL (2014) Green concrete or red herring? Future of alkali-activated materials. Adv Appl Ceram 113:472–477

    CAS  Article  Google Scholar 

  4. Snellings R, Mertens G, Elsen J (2012) Supplementary cementitious materials. Rev Miner Geochem 74:211–278. doi:10.2138/rmg.2012.74.6

    CAS  Article  Google Scholar 

  5. Provis JL, Van Deventer JSJ (2014) Alkali activated materials. Springer, London

    Book  Google Scholar 

  6. Davidovits J (2011) Geopolymer chemistry and applications, 3rd edn. Institut Géopolymère, Saint-Quentin

    Google Scholar 

  7. Provis LJ, van Deventer JSJ (2009) Geopolymers: structures, properties and industrial processing applications. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  8. Zeng D, Van Deventer JSJ, Duxson P (2007) Dry mix cement composition, methods and systems involving same. Patent WO 2007109862 A1

  9. Banah UK (2015) High performance geopolymer cement. Accessed 30 June 2016

  10. Rajamane NP, Nataraja MC, Jeyalakshmi R, Nithiyanantham S (2015) Greener durable concretes through geopolymerisation of blast furnace slag. Mater Res Express. doi:10.1088/2053-1591/2/5/055502

    Google Scholar 

  11. Attwell C (2014) Geopolymer concrete: a practical approach. In: Proceedings of the first international conference on construction materials and structures, pp 466–474

  12. PCI Geofug® - The high-convenience geopolymer joint grout that is almost self-cleaning. Accessed 30 June 2016

  13. Introducing Bluey’s new Geopolymer range. In: 14/7/2015. Accessed 30 June 2016

  14. GEOPOL® The enviromental binder process for a sustainable future. Accessed 30 June 2016

  15. Bosmans A, Vanderreydt I, Geysen D, Helsen L (2013) The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. J Clean Prod 55:10–23

    Article  Google Scholar 

  16. Jones PT, Geysen D, Tielemans Y et al (2013) Enhanced Landfill Mining in view of multiple resource recovery: a critical review. J Clean Prod 55:45–55

    Article  Google Scholar 

  17. Binnemans K, Jones PT, Blanpain B et al (2015) Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. J Clean Prod 99:17–38

    CAS  Article  Google Scholar 

  18. Van Passel S, Dubois M, Eyckmans J et al (2013) The economics of enhanced landfill mining: private and societal performance drivers. J Clean Prod 55:92–102

    Article  Google Scholar 

  19. Taylor R, Ray R, Chapman C (2013) Advanced thermal treatment of auto shredder residue and refuse derived fuel. Fuel 106:401–409

    CAS  Article  Google Scholar 

  20. Danthurebandara M, Van Passel S, Machiels L, Van Acker K (2015) Valorization of thermal treatment residues in enhanced landfill mining: environmental and economic evaluation. J Clean Prod 99:275–285

    CAS  Article  Google Scholar 

  21. Kriskova L, Machiels L, Pontikes Y (2015) Inorganic polymers from a plasma convertor slag: effect of activating solution on microstructure and properties. J Sustain Metall 1:240–251

    Article  Google Scholar 

  22. Kourti I, Rani DA, Deegan D et al (2010) Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. J Hazard Mater 176:704–709

    CAS  Article  Google Scholar 

  23. Kourti I, Rani DA, Boccaccinia R, Cheeseman CR (2011) Geopolymers from DC plasma-treated air pollution control residues, metakaolin, and granulated blast furnace slag. J Mater Civ Eng 23:735–740

    CAS  Article  Google Scholar 

  24. Kourti I, Devaraj AR, Guerrero Bustos A et al (2011) Geopolymers prepared from DC plasma treated air pollution control (APC) residues glass: properties and characterisation of the binder phase. J Hazard Mater 196:86–92

    CAS  Article  Google Scholar 

  25. Moustakas K, Fatta D, Malamis S et al (2005) Demonstration plasma gasification/vitrification system for effective hazardous waste treatment. J Hazard Mater 123:120–126

    CAS  Article  Google Scholar 

  26. Byun Y, Namkung W, Cho M et al (2010) Demonstration of thermal plasma gasification/vitrification for municipal solid waste treatment. Environ Sci Technol 44:6680–6684

    CAS  Article  Google Scholar 

  27. Quaghebeur M, Laenen B, Geysen D et al (2013) Characterization of landfilled materials: screening of the enhanced landfill mining potential. J Clean Prod 55:72–83

    CAS  Article  Google Scholar 

  28. Pontikes Y, Machiels L, Onisei S et al (2013) Slags with a high Al and Fe content as precursors for inorganic polymers. Appl Clay Sci 73:93–102

    CAS  Article  Google Scholar 

  29. Machiels L, Arnout L, Jones PT et al (2014) Inorganic polymer cement from Fe-silicate glasses: varying the activating solution to glass ratio. Waste Biomass Valoriz 5:411–428

    CAS  Article  Google Scholar 

  30. Yan P, Pandelaers L, Machiels L et al (2015) Effect of gas–slag interaction on valorisation of refuse derived fuel treated with plasma gasification. Min Process Extr Metall 124:76–82

    CAS  Article  Google Scholar 

  31. Yamaguchi N, Nagaishi M, Kisu K et al (2013) Preparation of monolithic geopolymer materials from urban waste incineration slags. J Ceram Soc J 121:847–854

    CAS  Article  Google Scholar 

  32. ECN Phyllis 2 database for biomass and waste (2012). Accessed 30 June 2016

  33. De Boom A, Degrez M (2012) Belgian MSWI fly ashes and APC residues: a characterisation study. Waste Manag 32:1163–1170

    Article  Google Scholar 

  34. Spooren J, Quaghebeur M, Nielsen P, et al (2013). Material recovery and upcycling within the elfm concept of the Remo case. In: Proceedings of 2nd international academic symposium on enhanced landfill mining, Houthalen-Helchteren, pp 131–156

  35. Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford Publishing, London

    Book  Google Scholar 

  36. Nagels E, Arnout S (2016) The use of flowsheet modelling for feasibility assessment of novel waste treatment methods. In: Proceedings of 3rd international enhancement landfill mining symposium, Lisbon, Portugal, pp 277–287

  37. Machiels L, Arnout L, Nagels E, et al (2015) Properties of inorganic polymer cement from ferric and ferrous vitrified residues of plasma gasification. In: Malfliet A, Pontikes Y (eds) Proceedings of 4th international slag valorisation symposium Leuven, pp 319–324

  38. Francois E, Elsen J, Pontikes Y, Machiels L (2015) Influence of the chemistry of vitrified residues on the properties of blended inorganic polymers with calcined kaolinitic clay. In: Malfliet A, Pontikes Y (eds) Proceedings of 4th international slag valorisation symposium, Leuven, pp 257–261

  39. Arnout L, Machiels L, Cappuyns V, et al (2015) The impact of curing conditions on heavy metal immobilisation of Fe-rich inorganic polymers. In: Malfliet A, Pontikes Y (eds) Proceedings of 4th international slag valorisation symposium, Leuven, pp 249–256

  40. Lee NP (2007) Creep and shrinkage of inorganic polymer concrete. BRANZ Study Report SR 175, BRANZ Ltd, Judgeford, New Zealand

    Google Scholar 

Download references


We gratefully acknowledge the Agentschap voor Innovatie door Wetenschap en Technologie (IWT), Milieu- en energietechnologie Innovatie Platform (MIP), i-CleanTech Vlaanderen, Groep Machiels and the partners in the Closing the Circle and PLASMAT projects.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Lieven Machiels.

Additional information

The contributing editor for this article was Dimitrios Panias.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Machiels, L., Arnout, L., Yan, P. et al. Transforming Enhanced Landfill Mining Derived Gasification/Vitrification Glass into Low-Carbon Inorganic Polymer Binders and Building Products. J. Sustain. Metall. 3, 405–415 (2017).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • Enhanced landfill mining
  • Plasma gasification
  • Solid recovered fuel
  • Vitrification
  • Inorganic polymer binders