Skip to main content
Log in

Scaling Laws of Elastocaloric Regenerators

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

This article has been updated

Abstract

Specific cooling power (SCP), a.k.a. cooling power density, measures the cooling power of a unit mass of solid-state refrigerant. Comparing SCP is popular but is only reasonable if SCP is an intensive parameter that does not change with system size. However, to the best of our knowledge, there is no evidence that this fundamental assumption is valid. To address this question, we have derived the scaling laws of SCP and other performance metrics in terms of size and the hydraulic diameter for elastocaloric regenerators. The resulting scaling laws indicate that in many cases the specific cooling power does vary with the system size, subject to specific design constraints. Therefore, there is no engineering significance to compare the SCP among different systems with different sizes unless one maintains the same constraints including pumping power density, efficiency, etc. Although the present scaling laws were developed specifically for elastocaloric regenerators, the methodology can be easily adopted for other caloric cooling technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 17 April 2024

    Truncated Equations 2 and 17 and overlapped equation numbers fixed in XML.

Abbreviations

A c :

Cross-sectional area [m2]

A :

Heat transfer area [m2]

COP :

Coefficient of performance

c :

Specific heat [J g1 K1]

d h :

Hydraulic diameter [m]

eC:

Elastocaloric

F :

Force [kN]

f :

Friction factor

G :

Mass flux [kg m2 s1]

h :

Convective heat transfer coefficient [W m2 K1]

k :

Thermal conductivity [W m1 K1]

L :

Length [m]

m :

Mass [kg]

\(\dot{m}\) :

Mass flow rate [kg s1]

Nu :

Nusselt number

Re :

Reynolds number

SCP :

Specific cooling power [W g1]

SCP sys :

System-level cooling power density [W g1]

SF :

Specific force [kN m3]

SHL :

Specific heat loss [W g1]

SMA:

Shape-memory alloy

SPP :

Specific pumping power [W g1]

t :

Time [s]

V * :

Displaced fluid volume ratio

\(\dot{V}\) :

Volumetric flow rate [m3 s1]

W pump :

Pumping power [W]

\({\delta }_{{\text{SMA}}}\) :

Equivalent thickness, inverse of specific heat transfer area [m]

\(\Delta p\) :

Pressure drop [Pa]

\(\Delta {T}_{{\text{ad}}}\) :

Adiabatic temperature change [K]

\({\eta }_{{\text{pump}}}\) :

Efficiency of pumps

\(\rho\) :

Density [kg m3]

\(\sigma\) :

Stress [MPa]

\(\mu\) :

Dynamic viscosity [Pa s]

0:

Baseline

b:

Buckling

ld:

Loading

References

  1. Cui J, Wu Y, Muehlbauer J et al (2012) Demonstration of high efficiency elastocaloric cooling with large ∆T using NiTi wires. Appl Phys Lett 101:073904. https://doi.org/10.1063/1.4746257

    Article  CAS  Google Scholar 

  2. Qian S, Geng Y, Wang Y et al (2016) A review of elastocaloric cooling: materials, cycles and system integrations. Int J Refrig 64:1–19

    Article  CAS  Google Scholar 

  3. Kabirifar P, Žerovnik A, Ahčin Ž et al (2019) Elastocaloric cooling: state-of-the-art and future challenges in designing regenerative elastocaloric devices. J Mech Eng 65:615–630. https://doi.org/10.5545/sv-jme.2019.6369

    Article  Google Scholar 

  4. Nakashima ATD, Fortkamp FP, de Sá NM et al (2021) A magnetic wine cooler prototype. Int J Refrig 122:110–121. https://doi.org/10.1016/j.ijrefrig.2020.11.015

    Article  CAS  Google Scholar 

  5. Qian X, Han D, Zheng L et al (2021) High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 600:664–669

    Article  CAS  PubMed  Google Scholar 

  6. Li B, Kawakita Y, Ohira-Kawamura S et al (2019) Colossal barocaloric effects in plastic crystals. Nature 567:506–510

    Article  CAS  PubMed  Google Scholar 

  7. Hou H, Qian S, Takeuchi I (2022) Materials, physics, and systems for multicaloric cooling. Nat Rev Mater 7:633–652

    Article  Google Scholar 

  8. Schmidt M, Schütze A, Seelecke S (2014) Experimental Investigation on the Efficiency of a control dependent niti-based cooling process. In: ASME 2014 conference on smart materials, adaptive structures and intelligent systems

  9. Greco A, Aprea C, Maiorino A, Masselli C (2019) A review of the state of the art of solid-state caloric cooling processes at room-temperature before 2019. Int J Refrig 106:66–88. https://doi.org/10.1016/j.ijrefrig.2019.06.034

    Article  Google Scholar 

  10. Qian S, Catalini D, Muehlbauer J et al (2023) High-performance multimode elastocaloric cooling system. Science 380:722–727

    Article  CAS  PubMed  Google Scholar 

  11. Qian S (2023) Thermodynamics of elastocaloric cooling and heat pump cycles. Appl Therm Eng 219:119540

    Article  Google Scholar 

  12. Ossmer H, Wendler F, Gueltig M et al (2016) Energy-efficient miniature-scale heat pumping based on shape memory alloys. Smart Mater Struct 25:085037. https://doi.org/10.1088/0964-1726/25/8/085037

    Article  CAS  Google Scholar 

  13. Brüederlin F, Ossmer H, Wendler F et al (2017) SMA foil-based elastocaloric cooling – from material behavior to device engineering. J Phys D 50:424003

    Article  Google Scholar 

  14. Schmidt M, Schütze A, Seelecke S (2015) Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int J Refrig 54:88–97

    Article  CAS  Google Scholar 

  15. Chen Y, Wang Y, Sun W et al (2022) A compact elastocaloric refrigerator. Innov 3:100205

    CAS  Google Scholar 

  16. Ulpiani G, Bruederlin F, Weidemann R et al (2020) Upscaling of SMA film-based elastocaloric cooling. Appl Therm Eng 180:115867

    Article  CAS  Google Scholar 

  17. Brüederlin F (2020) Advanced elastocaloric cooling devices based on shape memory alloy films. Karlsruher Institut für Technologie (KIT)

  18. Tušek J, Engelbrecht K, Eriksen D et al (2016) A regenerative elastocaloric heat pump. Nat Energy 1:16134

    Article  Google Scholar 

  19. Engelbrecht K, Tusek J, Eriksen D et al (2017) A regenerative elastocaloric device: experimental results. J Phys D Appl Phys 50:424006

    Article  Google Scholar 

  20. Zhou G, Zhu Y, Yao S, Sun Q (2023) Giant temperature span and cooling power in elastocaloric regenerator. Joule 7:2003–2015

    Article  CAS  Google Scholar 

  21. Ahčin Ž, , Dall’Olio S, Žerovnik A et al (2022) High-performance cooling and heat pumping based on fatigue-resistant elastocaloric effect in compression. Joule 6:2338–2357

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lilley D, Prasher R (2022) Ionocaloric refrigeration cycle. Science 378:1344–1348. https://doi.org/10.1126/science.ade1696

    Article  CAS  PubMed  Google Scholar 

  23. Marden JH (2005) Scaling of maximum net force output by motors used for locomotion. J Exp Biol 208:1653–1664. https://doi.org/10.1242/jeb.01483

    Article  PubMed  Google Scholar 

  24. Bruederlin F, Bumke L, Chluba C et al (2018) Elastocaloric cooling on the miniature scale: a review on materials and device engineering. Energy Technol 6:1588–1604. https://doi.org/10.1002/ente.201800137

    Article  Google Scholar 

  25. Qian S, Geng Y, Wang Y et al (2016) Design of a hydraulically driven compressive elastocaloric cooling system. Sci Technol Built Environ 22:500–506. https://doi.org/10.1080/23744731.2016.1171630

    Article  Google Scholar 

  26. Zhang J, Zhu Y, Cheng S et al (2022) Enhancing cooling performance of NiTi elastocaloric tube refrigerant via internal grooving. Appl Therm Eng 213:118657

    Article  CAS  Google Scholar 

  27. Zhang J, Zhu Y, Yao S, Sun Q (2023) Highly efficient grooved NiTi tube refrigerants for compressive elastocaloric cooling. Appl Therm Eng 228:120439

    Article  CAS  Google Scholar 

  28. Zhang J, Zhu Y, Cheng S et al (2023) Effect of inactive section on cooling performance of compressive elastocaloric refrigeration prototype. Appl Energy 351:121839. https://doi.org/10.1016/j.apenergy.2023.121839

    Article  CAS  Google Scholar 

  29. Porenta L, Kabirifar P, Žerovnik A et al (2020) Thin-walled Ni-Ti tubes under compression: ideal candidates for efficient and fatigue-resistant elastocaloric cooling. Appl Mater Today 20:100712. https://doi.org/10.1016/j.apmt.2020.100712

    Article  Google Scholar 

  30. Ahčin Ž, Liang J, Engelbrecht K, Tušek J (2021) Thermo-hydraulic evaluation of oscillating-flow shell-and-tube-like regenerators for (elasto)caloric cooling. Appl Therm Eng 190:116842. https://doi.org/10.1016/j.applthermaleng.2021.116842

    Article  Google Scholar 

  31. Emaikwu N, Catalini D, Muehlbauer J et al (2023) Experimental investigation of a staggered-tube active elastocaloric regenerator. Int J Refrig 153:370–377

    Article  Google Scholar 

  32. Wu Y, Liu Y, Qian S (2023) Numerical simulation of a foam regenerator for elastocaloric cooling. Appl Therm Eng 221:119819. https://doi.org/10.1016/j.applthermaleng.2022.119819

    Article  Google Scholar 

  33. Ianniciello L, Bartholomé K, Fitger A, Engelbrecht K (2022) Long life elastocaloric regenerator operating under compression. Appl Therm Eng 202:117838

    Article  CAS  Google Scholar 

  34. Ahčin Ž, Tušek J (2023) Parametric analysis of fatigue-resistant elastocaloric regenerators: tensile vs. compressive loading. Appl Therm Eng 231:120996. https://doi.org/10.1016/j.applthermaleng.2023.120996

    Article  Google Scholar 

  35. Bergman TL, Lavigne AS, Incropera FP, Dewitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley, New York

    Google Scholar 

  36. White F (2010) Fluid mechanics. McGraw-Hill, New York

    Google Scholar 

  37. Kirsch S-M, Welsch F, Ehl L et al (2019) Continuous operating elastocaloric heating and cooling device: air flow investigation and experimental parameter study. In: ASME 2019 conference on smart materials, adaptive structures and intelligent systems

  38. Cirillo L, Greco A, Masselli C, Qian S (2023) The Italian elastocaloric rotary air conditioner: numerical modelling for optimal design and enhanced energy performances. Therm Sci Eng Prog 37:101605

    Article  Google Scholar 

  39. Porenta L, Trojer J, Brojan M, Tušek J (2022) Experimental investigation of buckling stability of superelastic Ni-Ti tubes under cyclic compressive loading: Towards defining functionally stable tubes for elastocaloric cooling. Int J Solids Struct 256:111948. https://doi.org/10.1016/j.ijsolstr.2022.111948

    Article  CAS  Google Scholar 

  40. Franco V, Blázquez JS, Ipus JJ et al (2018) Magnetocaloric effect: from materials research to refrigeration devices. Prog Mater Sci 93:112–232. https://doi.org/10.1016/j.pmatsci.2017.10.005

    Article  Google Scholar 

  41. Bjørk R, Bahl CRH, Smith A, Pryds N (2010) Review and comparison of magnet designs for magnetic refrigeration. Int J Refrig 33:437–448

    Article  Google Scholar 

  42. Kitanovski A, Tušek J, Tomc U et al (2015) Magnetocaloric energy conversion: from theory to applications. Springer, New York

    Book  Google Scholar 

  43. Kamiya K, Matsumoto K, Numazawa T et al (2022) Active magnetic regenerative refrigeration using superconducting solenoid for hydrogen liquefaction. Appl Phys Express 15:53001. https://doi.org/10.35848/1882-0786/ac5723

    Article  CAS  Google Scholar 

  44. Archipley C, Barclay J, Meinhardt K et al (2022) Methane liquefaction with an active magnetic regenerative refrigerator. Cryogenics 128:103588

    Article  CAS  Google Scholar 

  45. Torelló A, Lheritier P, Usui T et al (2020) Giant temperature span in electrocaloric regenerator. Science 370:125–129

    Article  PubMed  Google Scholar 

  46. Li J, Torelló A, Kovacova V et al (2023) High cooling performance in a double-loop electrocaloric heat pump. Science 382:801–805. https://doi.org/10.1126/science.adi5477

    Article  CAS  PubMed  Google Scholar 

  47. Maier LM, Corhan P, Barcza A et al (2020) Active magnetocaloric heat pipes provide enhanced specific power of caloric refrigeration. Commun Phys 3:186. https://doi.org/10.1038/s42005-020-00450-x

    Article  CAS  Google Scholar 

  48. Bachmann N, Fitger A, Maier LM et al (2021) Long-term stable compressive elastocaloric cooling system with latent heat transfer. Commun Phys 4:194

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 52376015 and 51976149. The work at the University of Maryland was supported by the U.S. Department of Energy under DE-EE0009159.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suxin Qian or Ichiro Takeuchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in Shape Memory and Superelasticity on Elastocaloric Effects in Shape Memory Alloys. The issue was organized by Stefan Seelecke and Paul Motzki, Saarland University.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1158 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, S., Takeuchi, I. Scaling Laws of Elastocaloric Regenerators. Shap. Mem. Superelasticity (2024). https://doi.org/10.1007/s40830-024-00482-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40830-024-00482-0

Keywords

Navigation