Skip to main content
Log in

Effect of Layered Atomic Ordering on the Magnetic Properties of Fe2Ni-Based Heusler Alloys: Insights from Ab Initio Simulations

  • TECHNICAL ARTICLE
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

The structural and magnetic properties as well as the phase stability of Fe2NiZ (Z = Al, Ga, In, Sn) Heusler alloys are theoretically investigated and discussed in terms of the crystal structures with complex atomic ordering, in which a high magnetocrystalline anisotropy energy (MAE) is expected. For all compounds under study, the pseudocubic structure with alternating layers of Fe and Ni atoms exhibiting a large uniaxial MAE is predicted to be a ground state. The highest MAE of 1.433 MJ/m3 is obtained for the Fe2NiSn compound, which is of the same order as of L10-FeNi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Ping Liu J (2011) Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 23:821

    Article  CAS  Google Scholar 

  2. Coey JMD (2012) Permanent magnets: plugging the gap author links open overlay panel. Scr Mater 67:524

    Article  CAS  Google Scholar 

  3. Skomski R, Coey JMD (2016) Magnetic anisotropy—how much is enough for a permanent magnet? Scr Mater 112:3

    Article  CAS  Google Scholar 

  4. Kuz’min MD, Skokov KP, Jian H, Radulov I, Gutfleisch O (2014) Towards high-performance permanent magnets without rare earths. J Phys Condens Matter 26:064205

    Article  Google Scholar 

  5. Nieves P, Arapana S, Maudes-Raedo J, Marticorena-Sánchez R, Del Brío NL, Kovacs A, Echevarria-Bonet C, Salazar D, Weischenberg J, Zhang H, Vekilova OYu, Serrano-López R, Barandiaran JM, Skokov K, Gutfleisch O, Eriksson O, Herper HC, Schrefl T, Cuesta-López S (2019) Database of novel magnetic materials for high-performance permanent magnet development. Comput Mater Sci 168:188–202

    Article  CAS  Google Scholar 

  6. Sanvito F, Oses C, Xue J, Tiwari A, Zic M, Archer T, Tozman P, Venkatesan M, Coey M, Curtarolo S (2017) Accelerated discovery of new magnets in the Heusler alloy family. Sci Adv 3:e1602241

    Article  Google Scholar 

  7. Elphick K, Frost W, Samiepour M, Kubota T, Takanashi K, Sukegawa H, Mitani S, Hirohata A (2021) Heusler alloys for spintronic devices: review on recent development and future perspectives. Sci Technol Adv Mater 22:235–271

    Article  CAS  Google Scholar 

  8. Zhang H (2021) High-throughput design of magnetic materials. Electron Struct 3:033001

    Article  CAS  Google Scholar 

  9. Tavares S, Yang K, Meyers MA (2023) Heusler alloys: past, properties, new alloys, and prospects. Prog Mater Sci 132:101017

    Article  CAS  Google Scholar 

  10. Graf T, Felser C, Parkin SSP (2011) Simple rules for the understanding of Heusler compounds. Prog Solid State Ch 39:1–50

    Article  CAS  Google Scholar 

  11. Acet M, Wassermann EF (2012) Review on electronic and magnetic properties of Fe–based full-Heusler compounds. Adv Eng Mater 14:523

    Article  CAS  Google Scholar 

  12. Planes A, Manosa L, Acet M (2013) Recent progress and future perspectives in magnetic and metamagnetic shape-memory Heusler alloys. Mater Sci Forum 391:738–739

    Google Scholar 

  13. Yu GH, Xu YL, Liu ZH, Qiu HM, Zhu ZY, Huang XP, Pan LQ (2015) Recent progress in Heusler-type magnetic shape memory alloys. Rare Met 34:527

    Article  CAS  Google Scholar 

  14. Entel P, Gruner ME, Fähler S, Acet M, Çahır A, Arróyave R, Sahoo S, Duong TC, Talapatra A, Sandratskii L, Mankowsky S, Gottschall T, Gutfleisch O, Lázpita P, Chernenko VA, Barandiaran JM, Sokolovskiy VV, Buchelnikov VD (2018) Probing structural and magnetic instabilities and hysteresis in Heuslers by density functional theory calculations. Phys Status Solidi B 255:1870108

    Article  Google Scholar 

  15. Bachaga T, Zhang J, Khitouni M, Sunol JJ (2019) NiMn-based Heusler magnetic shape memory alloys: a review. Int J Adv Manuf Technol 103:2761

    Article  Google Scholar 

  16. Wollmann L, Chadov S, Kübler J, Felser C (2015) Magnetism in tetragonal manganese-rich Heusler compounds. Phys Rev B 92:064417

    Article  Google Scholar 

  17. Faleev SV, Ferrante Y, Jeong J, Samant MG, Jones B, Parkin SSP (2017) Heusler compounds with perpendicular magnetic anisotropy and large tunneling magnetoresistance. Phys Rev Mater 1:024402

    Article  Google Scholar 

  18. Matsushita YI, Madjarova G, Dewhurst JK, Shallcross S, Felser C, Sharma S, Gross EKU (2017) Large magnetocrystalline anisotropy in tetragonally distorted Heuslers: a systematic study. J Phys D Appl Phys 50:095002

    Article  Google Scholar 

  19. Herper HC (2018) Ni-based Heusler compounds: how to tune the magnetocrystalline anisotropy. Phys Rev B 98:014411

    Article  CAS  Google Scholar 

  20. Gao Q, Opahle I, Gutfleisch O, Zhang H (2020) Designing rare-earth free permanent magnets in Heusler alloys via interstitial doping. Acta Mater 186:355–362

    Article  CAS  Google Scholar 

  21. Sokolovskiy VV, Miroshkina ON, Buchelnikov VD, Gruner ME (2022) Impact of local arrangement of Fe and Ni on the phase stability and magnetocrystalline anisotropy in Fe-Ni-Al Heusler alloys. Phys Rev Mater 6:025402

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  23. Kresse G, Furthmüller J (1996) Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  24. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  25. Zhang YJ, Wang WH, Zhang HG, Liu EK, Ma RS, Wu GH (2013) Structure and magnetic properties of Fe2NiZ (Z = Al, Ga, Si and Ge) Heusler alloys. Phys B 38:1

    Article  Google Scholar 

  26. Gasi T, Ksenofontov V, Kiss J, Chadov S, Nayak AK, Nicklas M, Winterlik J, Schwall M, Klaer P, Adler P, Felser C (2013) Iron-based Heusler compounds Fe2YZ: comparison with theoretical predictions of the crystal structure and magnetic properties. Phys Rev B 87:064411

    Article  Google Scholar 

  27. Buschow K, van Engen P, Jongebreur R (1983) Magneto-optical properties of metallic ferromagnetic materials. J Magn Magn Mater 38:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

V.V.S. acknowledges the financial support from the Priority-2030 Program of NUST “MISiS” (grant No. K2-2022-022) (total energy calculations). V.D.B. acknowledge the Ministry of Science and Higher Education of the Russian Federation within the Russian State Assignment, under Contract 075-01493-23-00 (Eform and MAE calculations).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sokolovskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited submission to Shape Memory and Superelasticity selected from presentations at the 12th European Symposium on Martensitic Transformations (ESOMAT 2022) held September 5–9, 2022 at Hacettepe University, Beytepe Campus, Ankara, Turkey and has been expanded from the original presentation. The issue was organized by Prof. Dr. Benat Koҫkar, Hacettepe University.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolovskiy, V.V., Miroshkina, O.N., Buchelnikov, V.D. et al. Effect of Layered Atomic Ordering on the Magnetic Properties of Fe2Ni-Based Heusler Alloys: Insights from Ab Initio Simulations. Shap. Mem. Superelasticity 9, 420–426 (2023). https://doi.org/10.1007/s40830-023-00451-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-023-00451-z

Keywords

Navigation