Skip to main content
Log in

Review on the β-Ti Based High Temperature Shape Memory Alloys

  • TECHNICAL ARTICLE
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

High temperature shape memory alloys are used as intelligent driving, connecting and fastening components in the fire alarms, nuclear reactors, Mars detectors and other high temperature environments. It is an important metal intelligent material serving the development of science and technology. Compared with other high temperature memory alloys, β-Ti based high temperature shape memory alloys have attracted much more attention due to their high transformation temperature, large theoretical transformation strain, excellent cold and hot processing ability and low cost. However, some problems are existed to limit the application, such as poor thermal cycling stability and low shape memory effect. In recent years, researchers have designed and developed a series of new alloy systems. The properties are improved by means of composition optimization, thermomechanical treatment and so on. In this work, the recent development of some typical β-Ti based high temperature shape memory alloys are presented, including Ti–Nb based alloys with large strain recover characteristic, Ti–Ta based alloys with high thermal cycle stability and light weight Ti–V–Al based alloys. The microstructure, martensitic transformation behavior and functional properties of the alloy are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data this study is available from the corresponding author upon reasonable request.

References

  1. Otsuka K, Ren XB (1999) Recent developments in the research of shape memory alloys. Intermetallics 7(5):511–528

    CAS  Google Scholar 

  2. Jani JM, Leary M, Subic A (2017) Designing shape memory alloy linear actuators: A review. J Intell Mater Syst Struct 28(13):1699–1718

    Google Scholar 

  3. Yuan H, Fauroux JC, Chapelle F, Balandraud X (2017) A review of rotary actuators based on shape memory alloys. J Intell Mater Syst Struct 28(14):1863–1885

    CAS  Google Scholar 

  4. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678

    CAS  Google Scholar 

  5. Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315

    CAS  Google Scholar 

  6. Miyazaki S, Kim HY, Hosoda H (2006) Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng a-Struct Mater Propert Microstruct Process 438:18–24

    Google Scholar 

  7. Bahl S, Suwas S, Chatterjee K (2021) Comprehensive review on alloy design, processing, and performance of beta Titanium alloys as biomedical materials. Int Mater Rev 66(2):114–139

    CAS  Google Scholar 

  8. Zhang LC, Chen LY (2019) A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater 21(4):1801215

    Google Scholar 

  9. Matsumoto H, Watanabe S, Hanada S (2007) alpha ’ Martensite Ti-V-Sn alloys with low Young’s modulus and high strength. Mater Sci Eng a-Struct Mater Propert Microstruct Process 448(1–2):39–48

    Google Scholar 

  10. Cui Y, Li Y, Luo K, Xu HB (2010) Microstructure and shape memory effect of Ti–20Zr–10Nb alloy. Mater Sci Eng a-Struct Mater Propert Microstruct Process 527(3):652–656

    Google Scholar 

  11. Min XH, Emura S, Zhang L, Tsuzaki K (2008) Effect of Fe and Zr additions on omega phase formation in beta-type Ti–Mo alloys. Mater Sci Eng a-Struct Mater Propert Microstruct Process 497(1–2):74–78

    Google Scholar 

  12. Banerjee D, Williams JC (2013) Perspectives on Titanium science and technology. Acta Mater 61(3):844–879

    CAS  Google Scholar 

  13. Dobromyslov AV, Elkin VA (2006) The orthorhombic alpha ’ ’-phase in binary titanium-base alloys with d-metals of V–VIII groups. Mater Sci Eng a-Struct Mater Propert Microstruct Process 438:324–326

    Google Scholar 

  14. Kim HY, Ikehara Y, Kim JI, Hosoda H, Miyazaki S (2006) Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater 54(9):2419–2429

    CAS  Google Scholar 

  15. Kim HY, Satoru H, Kim J, Hosoda H, Miyazaki S (2004) Mechanical properties and shape memory behavior of Ti–Nb alloys. Mater Trans 45(7):2443–2448

    CAS  Google Scholar 

  16. Chai YW, Kim HY, Hosoda H, Miyazaki S (2008) Interfacial defects in Ti–Nb shape memory alloys. Acta Mater 56(13):3088–3097

    CAS  Google Scholar 

  17. Chai YW, Kim HY, Hosoda H, Miyazaki S (2009) Self-accommodation in Ti–Nb shape memory alloys. Acta Mater 57(14):4054–4064

    CAS  Google Scholar 

  18. Inamura T, Kim JI, Kim HY, Hosoda H, Wakashima K, Miyazaki S (2007) Composition dependent crystallography of alpha ’ ’-martensite in Ti–Nb-based beta-titanium alloy. Phil Mag 87(23):3325–3350

    CAS  Google Scholar 

  19. Sun B, Meng XL, Gao ZY, Cai W, Zhao LC (2017) Effect of annealing temperature on shape memory effect of cold-rolled Ti-16 at. % Nb alloy. J Alloy Comp 715:16–20

    CAS  Google Scholar 

  20. Tobe H, Kim HY, Inamura T, Hosoda H, Nam TH, Miyazaki S (2013) Effect of Nb content on deformation behavior and shape memory properties of Ti–Nb alloys. J Alloy Compd 577:S435–S438

    CAS  Google Scholar 

  21. Tahara M, Okano N, Inamura T, Hosoda H (2017) Plastic deformation behaviour of single-crystalline martensite of Ti–Nb shape memory alloy. Sci Rep 7:15715

    Google Scholar 

  22. Sun B, Meng XL, Gao ZY, Cai W (2019) Study on the deformation mechanism of the martensitic Ti–16Nb high temperature shape memory alloy. Mater Sci Eng a-Struct Mater Propert Microstruct Process 742:590–596

    CAS  Google Scholar 

  23. Sun B, Sun K, Meng X, Gao Z, Cai W (2021) Effect of texture on shape memory property of Ti-16Nb high temperature shape memory alloy. Mater Sci Eng a-Struct Mater Propert Microstruct Process 809:140779

    CAS  Google Scholar 

  24. Bertrand E, Castany P, Yang Y, Menou E, Gloriant T (2016) Deformation twinning in the full-alpha ’ ’ martensitic Ti–25Ta–20Nb shape memory alloy. Acta Mater 105:94–103

    CAS  Google Scholar 

  25. Al-Zain Y, Kim HY, Miyazaki S (2015) Effect of B addition on the microstructure and superelastic properties of a Ti–26Nb alloy. Mater Sci Eng a-Struct Mater Propert Microstruct Process 644:85–59

    CAS  Google Scholar 

  26. Pang EL, Pickering EJ, Baik SI, Seidman DN, Jones NG (2018) The effect of zirconium on the omega phase in Ti–24Nb- 0–8 Zr (at.%) alloys. Acta Materialia. 153:62–70

    CAS  Google Scholar 

  27. Kim JI, Kim HY, Inamura T, Hosoda H, Miyazaki S (2005) Shape memory characteristics of Ti–22Nb–(2–8)Zr(at.%) biomedical alloys. Mater Sci Eng a-Struct Mater Propert Microstruct Process 403:334–339

    Google Scholar 

  28. Kim JI, Kim HY, Hosoda H, Miyazaki S (2005) Shape memory behavior of Ti–22Nb–(0.5–2.0) O(at%) biomedical alloys. Mater Trans 46(4):852–857

    CAS  Google Scholar 

  29. Sun B, Meng XL, Gao ZY, Cai W (2018) Martensite structure and mechanical property of Ti–Nb–Ag shape memory alloys for biomedical applications. Vacuum 156:181–186

    CAS  Google Scholar 

  30. Minami D, Uesugi T, Takigawa Y, Higashi K (2017) First-principles study of transformation strains and phase stabilities in alpha ’ ’ and beta Ti–Nb-X alloys. J Alloy Compd 716:37–45

    CAS  Google Scholar 

  31. Sun X, Zhang H, Wang D, Sun Q, Zhao S, Lu S, Li W, Vitos L, Ding X (2021) Large recoverable strain with suitable transition temperature in TiNb-based multicomponent shape memory alloys: first-principles calculations. Acta Mater 221:117366

    CAS  Google Scholar 

  32. Buenconsejo PJS, Kim HY, Hosoda H, Miyazaki S (2009) Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater 57(4):1068–1077

    CAS  Google Scholar 

  33. Buenconsejo PJS, Kim HY, Miyazaki S (2009) Effect of ternary alloying elements on the shape memory behavior of Ti–Ta alloys. Acta Mater 57(8):2509–2515

    CAS  Google Scholar 

  34. Kim HY, Fukushima T, Buenconsejo PJS, Nam T-H, Miyazaki S (2011) Martensitic transformation and shape memory properties of Ti–Ta–Sn high temperature shape memory alloys. Mater Sci Eng a-Struct Mater Prop Microstruct Process 528(24):7238–7246

    CAS  Google Scholar 

  35. Zheng XH, Sui JH, Zhang X, Tian XH, Cai W (2012) Effect of Y addition on the martensitic transformation and shape memory effect of Ti–Ta high-temperature shape memory alloy. J Alloy Compd 539:144–147

    CAS  Google Scholar 

  36. Zheng XH, Sui JH, Zhang X, Yang ZY, Wang HB, Tian XH, Cai W (2013) Thermal stability and high-temperature shape memory effect of Ti–Ta–Zr alloy. Scripta Mater 68(12):1008–1011

    CAS  Google Scholar 

  37. Zheng X-H, Sui JH, Zhang X, Yang ZY, Cai W (2014) Thermal stability and high-temperature shape memory characteristics of Ti–20Zr–10Ta alloy. Chin Phys B 23(1):018101

    Google Scholar 

  38. Ferrari A, Paulsen A, Langenkaemper D, Piorunek D, Somsen C, Frenzel J, Rogal J, Eggeler G, Drautz R (2019) Discovery of omega-free high-temperature Ti–Ta-X shape memory alloys from first-principles calculations. Phys Rev Mater 3(10):103605

    CAS  Google Scholar 

  39. Lee Pak JS, Lei CY, Wayman CM (1991) Atomic ordering in Ti–V–Al shape memory alloys. Mater Sci Eng A-Struct Mater Prop Microstruct Prolcess 132:237–244

    Google Scholar 

  40. J.S. Lee Pak, C.Y. Lei, M.H. Wu, C.M. Wayman, (1992) Microstructures of athermal and stress-induced martensites of Ti–V–Al shape memory alloys, Proceedings of the International Conference of Martensitic Transformations, 533–537

  41. C.Y. Lei, J.S. Lee Pak, H.R.P. Inoue, C.M. Wayman, (1992) Shape memory behavior of Ti–V–Al Alloys, Proceedings of the International Conference of Martensitic Transformations, 539–544

  42. Yang ZY, Zheng XH, Cai W (2015) Martensitic transformation and shape memory effect of Ti–V–Al lightweight high-temperature shape memory alloys. Scripta Mater 99:97–100

    CAS  Google Scholar 

  43. Yi X, Wang H, Sun K, Gong Y, Meng X, Zhang H, Gao Z, Cai W (2021) The microstructure and martensitic transformation of Ti–V–Al–B elevated temperature shape memory alloy tailored by thermomechanical treatment. J Alloy Compd 853:157059

    CAS  Google Scholar 

  44. Yang ZY, Zheng XH, Cai W (2016) Effects of thermomechanical treatment on microstructure and shape memory effect of Ti–13V–3Al lightweight shape memory alloy. Mater Sci Eng a-Struct Mater Propert Microstruct Process 655:122–131

    CAS  Google Scholar 

  45. Sun K, Bin S, Yi X, Yang Y, Meng X, Gao Z, Wei C (2022) The microstructure and martensitic transformation of Ti–13V–3Al light weight shape memory alloy deformed by high-pressure torsion. J Alloy Compd 895:162612

    CAS  Google Scholar 

  46. Yang ZY, Zheng XH, Wu Y, Cai W (2016) Martensitic transformation and shape memory behavior of Ti–V–Al–Fe lightweight shape memory alloys. J Alloy Compd 680:462–466

    CAS  Google Scholar 

  47. Sun K, Yi X, Sun B, Yin X, Meng X, Cai W, Zhao L (2020) Microstructure and mechanical properties of Ti–V–Al–Cu shape memory alloy by tailoring Cu content. Mater Sci Eng a-Struct Mater Propert Microstruct Process 771:138641

    CAS  Google Scholar 

  48. Bag O, Yilmaz F, Kolemen U, Ergen S, Temiz C, Uzun O (2021) Transformational, microstructural and superelasticity characteristics of Ti–V–Al high temperature shape memory alloys with Zr addition. Phys Scr 96(8):085702

    Google Scholar 

  49. Yi X, Wang H, Sun B, Sun K, Huang C, Gao Z, Meng X, Cai W, Zhao L (2020) The microstructural characteristics and high temperature mechanical properties of quaternary Ti–V–Al–Co shape memory alloys. J Alloy Compd 835:155416

    CAS  Google Scholar 

  50. Yi X, Sun K, Sun B, Wang H, Li B, Gao Z, Meng X, Cai W (2020) Achieving fine-grained Ti–V–Al light weight shape memory alloys with higher transformation temperature, superior performances by doping Gd. Mater Charact 168:110534

    CAS  Google Scholar 

  51. Yi X, Sun K, Wang H, Gong Y, Meng X, Gao Z, Zhang H, Cai W (2021) Tuning microstructure, transformation behavior, mechanical/functional properties of Ti–V–Al shape memory alloy by doping quaternary rare earth Y. Progress Nat Sci-Mater Int 31(2):296–302

    CAS  Google Scholar 

  52. Wang H, Cao X, Huang B, Zhang S, Gong Y, Gao Z, Meng X, Yi X (2022) Stability of thermal cycling and high temperature mechanical properties for Ti-V-Al-B lightweight shape memory alloy. Progress Nat Sci-Mater Int 32(3):340–344

    CAS  Google Scholar 

  53. Wang H, Fu G, Sheng L, Sun W, Yang Q, Zhang S, Gao Z, Chen J, Yi X (2022) Microstructure, martensitic transformation, mechanical properties and shape memory effect of (TiBw+TiCp)/Ti–V–Al shape memory alloy composites. Mater Res Bull 152:111868

    CAS  Google Scholar 

  54. Yi X, Zhuang Y, Huang B, Sun K, Cao X, Gao W, Sun W, Meng X, Gao Z, Wang H, Song Y (2022) Comparisons of performances in Ti–V–Al composites with single and multiple in-situ reinforcements. Mater Sci Technol. https://doi.org/10.1080/02670836.2022.2122182

    Article  Google Scholar 

  55. Sun K, Sun B, Yi X, Yang Y, Meng X, Gao Z, Cai W (2022) (TiB+La2O3)/Ti–V–Al lightweight high temperature shape memory composites with high strength fabricated by reaction hot pressing and hot rolling. J Alloy Compd 909:164739

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 52271171 and 51931004) and Heilongjiang Touyan Innovation Team Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianglong Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special issue of Shape Memory and Superelasticity honoring Professor Kazuhiro Otsuka for his 50 years of research on shape memory alloys and his 85th birthday. The special issue was organized by Dr. Xiaobing Ren, National Institute for Materials Science; Prof. Antoni Planes, University of Barcelona; and Dr. Avadh Saxena, Los Alamos National Lab.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Meng, X., Gao, Z. et al. Review on the β-Ti Based High Temperature Shape Memory Alloys. Shap. Mem. Superelasticity 9, 252–260 (2023). https://doi.org/10.1007/s40830-023-00433-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-023-00433-1

Keywords

Navigation