Skip to main content
Log in

Standardization of Shape Memory Alloys from Material to Actuator

  • TECHNICAL ARTICLE
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Development of standard specifications and test methods for shape memory alloys (SMAs) in the context of actuator materials and components are outlined. A material specification centers on mill product wrought NiTi or NiTi + X + X′ based alloys, where X and X′ can be any alloying element addition to the base NiTi. This standard is aimed toward specifying the chemical, mechanical, thermal, and metallurgical requirements of NiTi-based alloys. Two newly proposed standard test methods are aimed toward expanding the applicability of the following published SMA actuator standards: E3097—Standard Test Method for Uniaxial Constant Force Thermal Cycling (UCFTC) and E3098—Standard Test Method for Uniaxial Pre-strain and Thermal Free Recovery (UPFR). First, Force-Controlled Repeated Thermal Cycling (FCRTC), addresses repeated thermal cycling under a constant force and associated terminology. FCRTC’s primary objective is to address failure with regard to the SMA material’s ability to perform its function as an actuator for an application’s required lifecycle. Second, Constant Torque Thermal Cycling (CTTC) deals with thermally cycling SMAs under a constant torque for rotary actuator applications. Key features of each proposed standard and progress on their development are outlined, considering novelty and applicability to actuation from raw material to final actuator component in its application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 1980–2015(56):1078–1113

    Article  Google Scholar 

  2. Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng G 221(4):535–552

    Article  CAS  Google Scholar 

  3. Calkins FT, Mabe JH (2010) Shape memory alloy based morphing aerostructures. J Mech Des 132:111012–111021

    Article  Google Scholar 

  4. Benafan O, Moholt MR, Bass M, Mabe JH, Nicholson DE, Calkins FT (2019) Recent advancements in rotary shape memory alloy actuators for aeronautics. Shape Mem Superelasticity 5(4):415–428

    Article  Google Scholar 

  5. Calkins FT, Mabe JH: Flight test of a shape memory alloy actuated adaptive trailing edge flap. In: ASME 2016 conference on smart materials, adaptive structures and intelligent systems (2016)

  6. Calkins FT, Nicholson DE, Fassmann A, Vijgen P, Yeeles C, Benafan O et al (2022) Shape memory alloy actuated vortex generators: development and flight test. In: SMST2022. ASM International, pp. 6–8

  7. Benafan O, Gaydosh DJ, Bigelow GS, Noebe RD, Calkins FT, Nicholson DE (2022) Shape memory alloy actuated vortex generators: alloy design. In: Shape memory and superelastic technology

  8. Hartl DJ, Mabe JH, Benafan O, Coda A, Conduit B, Padan R, Van Doren B (2015) Standardization of shape memory alloy test methods toward certification of aerospace applications. Smart Mater Struct 24(8):082001

    Article  Google Scholar 

  9. ASTM F2004-17 (2017) Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis. ASTM International, West Conshohocken, 2017. www.astm.org

  10. ASTM F2005-17 (2017) Standard terminology for nickel-titanium shape memory alloys. ASTM International, West Conshohocken, 2017. www.astm.org

  11. ASTM F2063-18 (2018) Standard specification for wrought nickel-titanium shape memory alloys for medical devices and surgical implants. ASTM International, West Conshohocken, 2017. www.astm.org

  12. ASTM F2082-16 (2016) Standard test method for determination of transformation temperature of nickel-titanium shape memory alloys by bend and free recovery. ASTM International, West Conshohocken, 2017. www.astm.org

  13. ASTM F2516-18 (2018) Standard test method for tension testing of nickel-titanium superelastic materials. ASTM International, West Conshohocken, 2017. www.astm.org

  14. ASTM F2633-18 (2018) Standard specification for wrought seamless nickel-titanium shape memory alloy tube for medical devices and surgical implants. ASTM International, West Conshohocken, 2017. www.astm.org

  15. ASTM E3097-17 (2017) Standard test method for mechanical uniaxial constant force thermal cycling of shape memory alloys. ASTM International, West Conshohocken, 2017. www.astm.org

  16. ASTM E3098-17 (2017) Standard test method for mechanical uniaxial pre-strain and thermal free recovery of shape memory alloys. ASTM International, West Conshohocken, 2017. www.astm.org

  17. Luna H, Bigelow GS, Benafan O (2022) Ruggedness evaluation of ASTM international standard test methods for shape memory materials: E3098 Standard Test Method for Mechanical Uniaxial Pre-strain and Thermal Free Recovery of Shape Memory Alloys (No. NASA/TM-2022)

  18. Bigelow GS, Benafan O, Toom ZD (2022) SMAnalytics—an automated software for the analysis of shape memory alloy test data. In: SMST2022. ASM International, pp 55–56

  19. Kuner MC, Karakalas AA, Lagoudas DC (2021) ASMADA—a tool for automatic analysis of shape memory alloy thermal cycling data under constant stress. Smart Mater Struct 30(12):125003

    Article  Google Scholar 

  20. Nicholson DE, Benafan O, Bigelow GS, Sczerzenie F, Forbes D, Van Doren B, Mabe JH, Demblon A, Karaman I (2022) An overview of ASTM standard test methods for shape memory alloy actuation materials. In: SMST2022. ASM International (pp. 59–60)

  21. ASTM Work Item (WK74640) New test method for load control thermomechanical actuation cycling of shape memory alloys. ASTM International, West Conshohocken. www.astm.org

  22. ASTM Work Item (WK74655) Constant torque thermal cycling of shape memory alloys. ASTM International, West Conshohocken. www.astm.org

  23. Frick CP, Ortega AM, Tyber J, Maksound AEM, Maier HJ, Liu Y, Gall K (2005) Thermal processing of polycrystalline NiTi shape memory alloys. Mater Sci Eng A 405(1–2):34–49

    Article  Google Scholar 

  24. Sharma N, Kumar K, Kumar V (2018) Post-processing of NiTi alloys: Issues and challenges. Powder Metall Met Ceram 56(9):599–609

    Article  CAS  Google Scholar 

  25. Lahoz R, Puértolas JA (2004) Training and two-way shape memory in NiTi alloys: influence on thermal parameters. J Alloys Compd 381(1–2):130–136

    Article  CAS  Google Scholar 

  26. Atli KC, Karaman I, Noebe RD, Gaydosh D (2013) The effect of training on two-way shape memory effect of binary NiTi and NiTi based ternary high temperature shape memory alloys. Mater Sci Eng A 560:653–666

    Article  CAS  Google Scholar 

  27. Benafan O, Bigelow GS, Garg A, Noebe RD, Gaydosh DJ, Rogers RB (2021) Processing and scalability of NiTiHf high-temperature shape memory alloys. Shape Mem Superelasticity 7(1):109–165

    Article  Google Scholar 

  28. Haghgouyan B, Hayrettin C, Baxevanis T, Karaman I, Lagoudas DC (2019) Fracture toughness of NiTi–towards establishing standard test methods for phase transforming materials. Acta Mater 162:226–238

    Article  CAS  Google Scholar 

  29. Benafan O, Bigelow GS, Young AW (2020) Shape memory materials database tool—a compendium of functional data for shape memory materials. Adv Eng Mater 22:1901370. https://doi.org/10.1002/adem.201901370

    Article  CAS  Google Scholar 

  30. https://shapememory.grc.nasa.gov. Accessed Sept 2022

  31. Keret-Klainer M, Padan R, Khoptiar Y et al (2022) Tailoring thermal and electrical conductivities of a Ni-Ti-Hf-based shape memory alloy by microstructure design. J Mater Sci 57:12107–12124. https://doi.org/10.1007/s10853-022-07383-6

    Article  CAS  Google Scholar 

  32. Benafan O, Noebe RD, Padula SA II, Brown DW, Vogel S, Vaidyanathan R (2014) Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution. Int J Plast 56:99–118

    Article  CAS  Google Scholar 

  33. Demblon A, Karakoc O, Sam J, Zhao D, Atli KC, Mabe JH, Karaman I (2022) Compositional and microstructural sensitivity of the actuation fatigue response in NiTiHf high temperature shape memory alloys. Mater Sci Eng A 838:142786. https://doi.org/10.1016/j.msea.2022.142786

    Article  CAS  Google Scholar 

  34. Frenzel J, George EP, Dlouhy A, Somsen C, Wagner M-X, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458

    Article  CAS  Google Scholar 

  35. Frenzel J, Wieczorek A, Opahle I, Maaß B, Drautz R, Eggeler G (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater 90:213–231

    Article  CAS  Google Scholar 

  36. Karakoc O, Hayrettin C, Evirgen A, Santamarta R, Canadinc D, Wheeler RW, Wang SJ, Lagoudas DC, Karaman I (2019) Role of microstructure on the actuation fatigue performance of Ni-Rich NiTiHf high temperature shape memory alloys. Acta Mater 175:107–120

    Article  CAS  Google Scholar 

  37. Kreitcberg A, Brailovski V, Prokoshkin S, Facchinello Y, Inaekyan К, Dubinskiy S (2013) Microstructure and functional fatigue of nanostructured Ti–50.26at%Ni alloy after thermomechanical treatment with warm rolling and intermediate annealing. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2012.11.013

    Article  Google Scholar 

  38. Rahim M, Frenzel J, Frotscher M, Pfetzing-Micklich J, Steegmüller R, Wohlschlögel M, Mughrabi H, Eggeler G (2013) Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Mater. https://doi.org/10.1016/j.actamat.2013.02.054

    Article  Google Scholar 

  39. LePage WS, Ahadi A, Lenthe WC, Sun QP, Pollock TM, Shaw JA, Daly SH (2018) Grain size effects on NiTi shape memory alloy fatigue crack growth. J Mater Res. https://doi.org/10.1557/jmr.2017.395

    Article  Google Scholar 

  40. Yin H, He Y, Moumni Z, Sun Q (2016) Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2016.03.023

    Article  Google Scholar 

  41. Umale T, Salas D, Tomes B, Arroyave R, Karaman I (2019) The effects of wide range of compositional changes on the martensitic transformation characteristics of NiTiHf shape memory alloys. Scr Mater. https://doi.org/10.1016/j.scriptamat.2018.10.008

    Article  Google Scholar 

  42. Scirè Mammano G, Dragoni E (2015) Effect of stress, heating rate, and degree of transformation on the functional fatigue of Ni-Ti shape memory wires. J Mater Eng Perform. https://doi.org/10.1007/s11665-015-1561-7

    Article  Google Scholar 

  43. Bertacchini OW, Lagoudas DC, Patoor E (2009) Thermomechanical transformation fatigue of TiNiCu SMA actuators under a corrosive environment – Part I: Experimental results. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2009.04.012

    Article  Google Scholar 

  44. Lagoudas DC, Miller DA, Rong L, Kumar PK (2009) Thermomechanical fatigue of shape memory alloys. Smart Mater Struct. https://doi.org/10.1088/0964-1726/18/8/085021

    Article  Google Scholar 

  45. Karhu M, Lindroos T (2010) Long-term behaviour of binary Ti–49.7Ni (at.%) SMA actuators—the fatigue lives and evolution of strains on thermal cycling. Smart Mater Struct. https://doi.org/10.1088/0964-1726/19/11/115019

    Article  Google Scholar 

  46. Tugrul HO, Saygili HH, Kockar B (2020) Influence of limiting the actuation strain on the functional fatigue behavior of Ni50.3Ti29.7Hf20 high temperature shape memory alloy. J Intell Mater Syst Struct. https://doi.org/10.1177/1045389x20953610

    Article  Google Scholar 

  47. Ganesan S, Vedamanickam S (2022) Effect of operating parameters on functional fatigue characteristics of an Ni-Ti shape memory alloy on partial thermomechanical cycling. J Intell Mater Syst Struct. https://doi.org/10.1177/1045389x211072233

    Article  Google Scholar 

  48. Akgul O, Tugrul HO, Kockar B (2020) Effect of the cooling rate on the thermal and thermomechanical behavior of NiTiHf high-temperature shape memory alloy. J Mater Res. https://doi.org/10.1557/jmr.2020.139

    Article  Google Scholar 

  49. Karakoc O, Hayrettin C, Bass M, Wang SJ, Canadinc D, Mabe JH, Lagoudas DC, Karaman I (2017) Effects of upper cycle temperature on the actuation fatigue response of NiTiHf high temperature shape memory alloys. Acta Mater 138:185–197

    Article  CAS  Google Scholar 

  50. Padula S, Qiu S, Gaydosh D, Noebe R, Bigelow G, Garg A, Vaidyanathan R (2012) Effect of upper-cycle temperature on the load-biased, strain-temperature response of NiTi. Metall Mater Trans A 43(12):4610–4621

    Article  CAS  Google Scholar 

  51. Clingman DJ, Calkins FT, Smith JP: Thermomechanical properties of Ni 60% weight Ti 40% weight." In: Smart structures and materials 2003: active materials: behavior and mechanics, vol 5053. SPIE, pp 219–229 (2003)

  52. Grossmann C, Frenzel J, Sampath V, Depka T, Eggeler G (2009) Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metall Mater Trans A 40(11):2530

    Article  Google Scholar 

  53. Karakoc O, Atli KC, Benafan O, Noebe RD, Karaman I (2022) Actuation fatigue performance of NiTiZr and comparison to NiTiHf high temperature shape memory alloys. Mater Sci Eng A 829:142154

    Article  CAS  Google Scholar 

  54. Atli KC, Karaman I, Noebe RD (2011) Work output of the two-way shape memory effect in Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Scr Mater 65(10):903–906

    Article  CAS  Google Scholar 

  55. Scirè Mammano G, Dragoni E (2014) Functional fatigue of Ni–Ti shape memory wires under various loading conditions. Int J Fatigue 69:71–83

    Article  Google Scholar 

  56. Jardine AP, Bartley-Cho JD, Flanagan JS (1999) Improved design and performance of the SMA torque tube for the DARPA Smart Wing Program. In: Smart structures and materials 1999: industrial and commercial applications of smart structures technologies, vol 3674. SPIE, pp 260–269

  57. Mabe JH, Ruggeri RT, Rosenzweig E, Yu CJM (2004) NiTinol performance characterization and rotary actuator design. In: Smart structures and materials 2004: industrial and commercial applications of smart structures technologies, vol 5388. SPIE, pp 95–109

  58. Benafan O, Gaydosh DJ (2018) Constant-torque thermal cycling and two-way shape memory effect in Ni50.3Ti29.7Hf20 torque tubes. Smart Mater Struct 27(7):075035

    Article  Google Scholar 

  59. Nicholson DE, Bass MA, Mabe JH, Benafan O, Padula SA, Vaidyanathan R (2016) Heating and loading paths to optimize the performance of trained shape memory alloy torsional actuators. In: Smart materials, adaptive structures and intelligent systems, vol 50480. American Society of Mechanical Engineers, p V001T02A008

  60. Stroud H, Hartl D (2020) Shape memory alloy torsional actuators: a review of applications, experimental investigations, modeling, and design. Smart Mater Struct 29(11):113001

    Article  CAS  Google Scholar 

  61. Nicholson DE, Padula SA, Benafan O, Bunn JR, Payzant EA, An K, Penumadu D, Vaidyanathan R (2021) Mapping of texture and phase fractions in heterogeneous stress states during multiaxial loading of biomedical superelastic NiTi. Adv Mater 33(5):2005092

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Aerospace Vehicle Systems Institute (AVSI) and Consortium for the Advancement of Shape Memory Alloy Research and Technology (CASMART) organizations and their many members who contributed countless in-kind and volunteer hours to these efforts! Furthermore, the authors would like to acknowledge ASTM and its E08 members for providing a platform for developing, review for consensus, publishing, and maintaining the standards discussed here. OB and GSB acknowledge support from the NASA Aeronautics Research Mission Directorate (ARMD) Transformational Tools and Technologies (TTT) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Nicholson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicholson, D.E., Benafan, O., Bigelow, G.S. et al. Standardization of Shape Memory Alloys from Material to Actuator. Shap. Mem. Superelasticity 9, 353–363 (2023). https://doi.org/10.1007/s40830-023-00431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-023-00431-3

Keywords

Navigation