Skip to main content
Log in

Crystallographic and Magnetic Domains in Heat-Treated Fe–N Alloy Containing α″-Fe16N2 Phase

  • TECHNICAL ARTICLE
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Heat treatment of martensite in Fe–N alloy produces α″-Fe16N2 phase, which appears to show a giant magnetic flux density that exceeds the upper limit predicted by the Slater–Pauling curve. Here, we reveal the relationship between the crystallographic microstructure and the magnetic domain structure in a heat-treated Fe–N alloy. Transmission electron microscopy observations revealed a complex crystallographic microstructure in the heat-treated specimen: lamellae composed of α″-Fe16N2, α-Fe, and γ′-Fe4N phases. Electron holography was used to map the magnetic flux lines in the mixed-phase state and revealed a substantial magnetocrystalline anisotropy of the α″-Fe16N2 phase. The observations provide useful information for engineering of the α″-Fe16N2 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bozorth RM (1951) Ferromagnetism. D. Van Nostrarnd company Inc, New York

    Google Scholar 

  2. Kim TK, Takahashi M (1972) New magnetic material having ultrahigh magnetic moment. Appl Phys Lett 20:492–494

    Article  CAS  Google Scholar 

  3. Komuro M, Kozono Y, Hanazono M, Sugita Y (1990) Epitaxial growth and magnetic properties of Fe16N2 films with high saturation magnetic flux density. J Appl Phys 67:5126–5130

    Article  CAS  Google Scholar 

  4. Sugita Y, Mitsuoka K, Komuro M et al (1991) Giant magnetic moment and other magnetic properties of epitaxially grown Fe16N2 single-crystal films (invited). J Appl Phys 70:5977–5982

    Article  CAS  Google Scholar 

  5. Kozono Y, Komuro M, Hanazono M, Sugita Y (1991) Direct growth of Fe16N2 films with high saturation flux density on GaAs and InGaAs substrates. J Magn Soc Jpn 15:59–62

    Article  CAS  Google Scholar 

  6. Yao ZY, Jiang H, Liu ZK et al (1998) Formation and magnetic properties of Fe16N2 films prepared by ion-beam-assisted deposition. J Magn Magn Mater 177–181:1291–1292

    Article  Google Scholar 

  7. Takahashi H, Igarashi M, Kaneko A et al (1999) Perpendicular uniaxial magnetic anisotropy of Fe16N2(001) single crystal films grown by molecular beam epitaxy. IEEE Trans Magn 35:2982–2984

    Article  CAS  Google Scholar 

  8. Huang MQ, Wallace WE, Simizu S et al (1994) Synthesis and characterization of Fe16N2 in bulk form. J Appl Phys 75:6574–6576

    Article  CAS  Google Scholar 

  9. Wallace WE, Huang MQ (1994) Enhanced Fe moment in nitrogen martensite and Fe16N2 (invited). J Appl Phys 76:6648–6652

    Article  CAS  Google Scholar 

  10. Coey JMD (1994) The magnetization of bulk α″Fe16N2 (invited). J Appl Phys 76:6632–6636

    Article  CAS  Google Scholar 

  11. Nakajima K, Okamoto S (1990) Large magnetization induced in single crystalline iron films by high-dose nitrogen implantation. Appl Phys Lett 56:92–94

    Article  CAS  Google Scholar 

  12. Shinno H, Uehara M, Saito K (1997) Synthesis of α″-Fe16N2 iron nitride by means of nitrogen-ion implantation into iron thin films. J Mater Sci 32:2255–2261

    Article  CAS  Google Scholar 

  13. Sakuma A (1996) Electronic and magnetic structure of iron nitride, Fe16N2 (invited). J Appl Phys 79:5570–5575

    Article  CAS  Google Scholar 

  14. Coey JMD, Smith PAI (1999) Magnetic nitrides. J Magn Magn Mater 200:405–424

    Article  CAS  Google Scholar 

  15. Takahashi M, Shoji H (2000) α″-Fe16N2 problem: giant magnetic moment or not. J Magn Magn Mater 208:145–157

    Article  CAS  Google Scholar 

  16. Jack KH (1951) The occurrence and the crystal structure of α″-iron nitride; a new type of interstitial alloy formed during the tempering of nitrogen-martensite. Proc R Soc A 208:216–224

    CAS  Google Scholar 

  17. Ji N, Liu X, Wang JP (2010) Theory of giant saturation magnetization in α″-Fe16N2: role of partial localization in ferromagnetism of 3d transition metals. New J Phys 12:063032

    Article  Google Scholar 

  18. Okamoto S, Kitakami O, Shimada Y (2000) Crystal distortion and the magnetic moment of epitaxially grown α″-Fe16N2. J Magn Magn Mater 208:102–114

    Article  CAS  Google Scholar 

  19. Ji N, Allard LF, Lara-Curzio E, Wang JP (2011) N site ordering effect on partially ordered Fe16N2. Appl Phys Lett 98:092506

    Article  Google Scholar 

  20. Ji N, Lauter V, Zhang X et al (2013) Strain induced giant magnetism in epitaxial Fe16N2 thin film. Appl Phys Lett 102:072411

    Article  Google Scholar 

  21. Hang X, Matsuda M, Held JT et al (2020) Magnetic structure of Fe16N2 determined by polarized neutron diffraction on thin-film samples. Phys Rev B 102:104402

    Article  CAS  Google Scholar 

  22. Yang M, Allard LF, Ji N et al (2013) The effect of strain induced by Ag underlayer on saturation magnetization of partially ordered Fe16N2 thin films. Appl Phys Lett 103:242412

    Article  Google Scholar 

  23. Hang X, Zhang X, Ma B et al (2018) Epitaxial Fe16N2 thin film on nonmagnetic seed layer. Appl Phys Lett 112:192402

    Article  Google Scholar 

  24. Jack KH (1951) The iron-nitrogen system: the preparation and the crystal structures of nitrogen-austenite (γ) and nitrogen-martensite (α′). Proc Roy Soc A 208:200–215

    CAS  Google Scholar 

  25. Dahmen U, Ferguson P, Westmacott KH (1987) A TEM study of α″-Fe16N2 and γ′-Fe4N precipitation in iron–nitrogen. Acta Metall 5:1037–1046

    Article  Google Scholar 

  26. Tanaka H, Nagakura S, Nakamura Y, Hirotsu Y (1997) Electron crystallography study of tempered iron–nitrogen martensite and structure refinement of precipitated α″-Fe16N2. Acta Mater 45:1401–1410

    Article  CAS  Google Scholar 

  27. Völkl E, Allard LF, Joy DC (1999) Introduction to electron holography, 1st edn. Springer, Boston, MA

    Book  Google Scholar 

  28. Tonomura A, Matsuda T, Endo J, Mihama K (1986) Holographic interference electron microscopy for determining specimen magnetic structure and thickness distribution. Phys Rev 34:3397–3402

    Article  CAS  Google Scholar 

  29. van Gent A, van Doorn EC, Mittemeijer EJ (1985) Crystallography and tempering behavior of iron-nitrogen martensite. Metall Trans A 16A:1371–1384

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by KAKENHI (Grant Nos. 21H04623 and 22K18904) funded by JSPS and the program for advanced research equipment platforms by MEXT (Grant No. JPMXS0450200121).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takehiro Tamaoka or Yasukazu Murakami.

Additional information

This invited article is part of a special issue of Shape Memory and Superelasticity honoring Professor Kazuhiro Otsuka for his 50 years of research on shape memory alloys and his 85th birthday. The special issue was organized by Dr. Xiaobing Ren, National Institute for Materials Science; Prof. Antoni Planes, University of Barcelona; and Dr. Avadh Saxena, Los Alamos National Lab.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamaoka, T., Okamoto, S. & Murakami, Y. Crystallographic and Magnetic Domains in Heat-Treated Fe–N Alloy Containing α″-Fe16N2 Phase. Shap. Mem. Superelasticity 9, 293–299 (2023). https://doi.org/10.1007/s40830-023-00417-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-023-00417-1

Keywords

Navigation