Skip to main content

Advertisement

Log in

Effect of Ce and Sb Elements Addition on Porous Ti–23 wt%Nb–Sn for Biomedical Applications

  • Technical Article
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Ti–Nb, Ti–Nb–Sn, Ti–Nb–Sn–xCe and Ti–Nb–Sn–xSb shape memory alloys (SMAs) fabricated by powder metallurgy method and sintered via microwave sintering (MWS) technique, where x = 0, 0.2 and 0.4 wt% of Ce and Sb. The influence of Sn, Ce, and Sb on Ti–Nb alloy due to the porosity reduction, microstructure, mechanical properties, elastic modulus and corrosion behavior was investigated. The microstructure exhibits β, α as main phases and small intensities of α″ phase, this microstructure shows needles-like and dendritic-like morphologies. Adding Ce and Sb to Ti–Nb–0.5Sn refine the grains size especially at the percentage of 0.4%. Ti–Nb based SMAs before and after adding Sn, Ce, and Sb exhibit superior properties, Ti–Nb–Sn–0.4Ce SMA exhibit the best mechanical properties and corrosion behavior due to high fracture strength of 900 MPa, good strain recovery of E2 = 75%, excellent corrosion rate of 111 × 10–6 mm/year and high corrosion resistance of 5588 kΩ. These SMAs exhibited low elastic modulus in the range of 16 to 21 GPa which makes them suitable for biomedical implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Miyazaki S, Kim H, Hosoda H (2006) Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng A 438:18–24

    Google Scholar 

  2. Wever D, Veldhuizen A, Sanders M, Schakenraad J, Van Horn J (1997) Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials 18:1115–1120

    CAS  Google Scholar 

  3. Niinomi M (2003) Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6 Zr. Biomaterials 24:2673–2683

    CAS  Google Scholar 

  4. Laheurte P, Prima F, Eberhardt A, Gloriant T, Wary M, Patoor E (2010) Mechanical properties of low modulus β titanium alloys designed from the electronic approach. J Mech Behav Biomed Mater 3:565–573

    CAS  Google Scholar 

  5. Inamura T, Hosoda H, Wakashima K, Miyazaki S (2005) Anisotropy and temperature dependence of Young’s modulus in textured TiNbAl biomedical shape memory alloy. Mater Trans 46:1597–1603

    CAS  Google Scholar 

  6. Masahashi N, Mizukoshi Y, Semboshi S, Ohtsu N, Jung T, Hanada S (2019) Photo-induced characteristics of a Ti–Nb–Sn biometallic alloy with low Young’s modulus. Thin Solid Films 519:276–283

    Google Scholar 

  7. Zhang LC, Chen LY (2019) A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater 21:1801215

    Google Scholar 

  8. Tong X, Sun Q, Zhang D, Wang K, Dai Y, Shi Z et al (2021) Impact of scandium on mechanical properties, corrosion behavior, friction and wear performance, and cytotoxicity of a β-type Ti–24Nb–38Zr–2Mo alloy for orthopedic applications. Acta Biomater. https://doi.org/10.1016/j.actbio.2021.07.061

    Article  Google Scholar 

  9. Matsumoto H, Watanabe S, Hanada S (2005) Beta TiNbSn alloys with low Young’s modulus and high strength. Mater Trans 46:1070–1078

    CAS  Google Scholar 

  10. Ozaki T, Matsumoto H, Watanabe S, Hanada S (2004) Beta Ti alloys with low Young’s modulus. Mater Trans 45:2776–2779

    CAS  Google Scholar 

  11. Hu Q-M, Li S-J, Hao Y-L, Yang R, Johansson B, Vitos L (2008) Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations. Appl Phys Lett 93:121902

    Google Scholar 

  12. Wu X, Peng Q, Zhao J, Lin J (2015) Effect of Sn content on the corrosion behavior of Ti-based biomedical amorphous alloys. Int J Electrochem Sci 10:2045–2054

    CAS  Google Scholar 

  13. Manivannan S, Gopalakrishnan SK, Babu SK, Sundarrajan S (2016) Effect of cerium addition on corrosion behaviour of AZ61+XCe alloy under salt spray test. Alex Eng J 55:663–671

    Google Scholar 

  14. Ibrahim MK, Hamzah E, Saud SN, Nazim E, Bahador A (2017) Influence of Ce addition on biomedical porous Ti-51 atomic percentage (at.%) Ni shape memory alloy fabricated by microwave sintering. AIP conference proceedings. AIP Publishing LLC, Melville, p 100006

    Google Scholar 

  15. Zhao X, Wang W, Chen L, Liu F, Chen G, Huang J et al (2008) Two-stage superelasticity of a Ce-added laser-welded TiNi alloy. Mater Lett 62:3539–3541

    CAS  Google Scholar 

  16. Mohamed HI, Moussa ME, Waly MA, Al-Ganainy GS, Ahmed AB, Talaat MS (2017) Effect of adding Sb on microstructure, mechanical properties and in vitro degradation behavior of as Cast Mg-4wt% Zn alloy for medical application. J Surf Eng Mater Adv Technol 7:69

    CAS  Google Scholar 

  17. Mertinger V (2014) The effect of strontium and antimony on the mechanical properties of Al-Si alloys. Mater Sci Eng 39:69–79

    Google Scholar 

  18. Le D, Ji W, Kim J, Jeong K, Lee S (2008) Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system. Corros Sci 50:1195–1204

    CAS  Google Scholar 

  19. Torres A, Hernández L, Domínguez O (2012) Effect of antimony additions on corrosion and mechanical properties of Sn-Bi eutectic lead-free solder alloy. Mater Sci Appl 3:355

    CAS  Google Scholar 

  20. Nouri A (2008) Novel metal structures through powder metallurgy for biomedical applications. Deakin University, Geelong

    Google Scholar 

  21. Nouri A, Hodgson PD, Ce W (2010) Biomimetic porous titanium scaffolds for orthopaedic and dental applications. InTech, London

    Google Scholar 

  22. Özgen C (2007) Production and characterization of porous titanium alloys. Middle East Technical University, Ankara

    Google Scholar 

  23. Wen C, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T (2001) Processing of biocompatible porous Ti and Mg. Scr Mater 45:1147–1153

    CAS  Google Scholar 

  24. Bram M, Stiller C, Buchkremer HP, Stöver D, Baur H (2000) High-porosity titanium, stainless steel, and superalloy parts. Adv Eng Mater 2:196–199

    CAS  Google Scholar 

  25. Wen CE, Yamada Y, Nouri A, Hodgson PD (2007) Porous titanium with porosity gradients for biomedical applications. Materials science forum. Trans Tech Publications Ltd., Freienbach, pp 720–725

    Google Scholar 

  26. Dewidar MM, Lim J (2008) Properties of solid core and porous surface Ti–6Al–4V implants manufactured by powder metallurgy. J Alloys Compd 454:442–446

    CAS  Google Scholar 

  27. Zhang Y, Li D, Zhang X (2007) Gradient porosity and large pore size NiTi shape memory alloys. Scr Mater 57:1020–1023

    CAS  Google Scholar 

  28. Rausch G, Banhart J (2002) Making cellular metals from metals other than aluminum. Handbook of cellular metals. Wiley-VCH Verlag, Weinheim, pp 21–28

    Google Scholar 

  29. Hey J, Jardine A (1994) Shape memory TiNi synthesis from elemental powders. Mater Sci Eng A 188:291–300

    Google Scholar 

  30. Zhang N, Khosrovabadi PB, Lindenhovius J, Kolster B (1992) TiNi shape memory alloys prepared by normal sintering. Mater Sci Eng A 150:263–270

    Google Scholar 

  31. Green S, Grant D, Kelly N (1997) Powder metallurgical processing of Ni–Ti shape memory alloy. Powder Metall 40:43–47

    CAS  Google Scholar 

  32. Igharo M, Wood J (1985) Compaction and sintering phenomena in titanium—nickel shape memory alloys. Powder Metall 28:131–139

    CAS  Google Scholar 

  33. Morris D, Morris M (1989) NiTi intermetallic by mixing, milling and interdiffusing elemental components. Mater Sci Eng A 110:139–149

    Google Scholar 

  34. Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 494:175–189

    CAS  Google Scholar 

  35. Das S, Mukhopadhyay A, Datta S, Basu D (2009) Prospects of microwave processing: an overview. Bull Mater Sci 32:1–13

    CAS  Google Scholar 

  36. Ibrahim MK, Hamzah E, Saud SN (2019) Microstructure, phase transformation, mechanical behavior, bio-corrosion and antibacterial properties of Ti–Nb-xSn (x= 0, 0.25, 0.5 and 1.5) SMAs. J Mater Eng Perform 28:382–393

    CAS  Google Scholar 

  37. Ibrahim MK, Hamzah E, Saud SN, Nazim E, Iqbal N, Bahador A (2018) Effect of Sn additions on the microstructure, mechanical properties, corrosion and bioactivity behaviour of biomedical Ti–Ta shape memory alloys. J Therm Anal Calorim 131:1165–1175

    CAS  Google Scholar 

  38. Bakhsheshi-Rad H, Idris M, Abdul-Kadir M, Ourdjini A, Medraj M, Daroonparvar M et al (2014) Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater Des 53:283–292

    CAS  Google Scholar 

  39. Argade G, Kandasamy K, Panigrahi S, Mishra R (2012) Corrosion behavior of a friction stir processed rare-earth added magnesium alloy. Corros Sci 58:321–326

    CAS  Google Scholar 

  40. Sharma B, Vajpai SK, Ameyama K (2016) Microstructure and properties of beta Ti–Nb alloy prepared by powder metallurgy route using titanium hydride powder. J Alloys Compd 656:978–986

    CAS  Google Scholar 

  41. Nouri A, Lin J, Li Y, Yamada Y, Hodgson P, Wen C (2007) Microstructure evolution of TI-SN-NB alloy prepared by mechanical alloying. Materials forum (CD-ROM). Institute of Materials Engineering Australasia, North Melbourne, pp 64–70

    Google Scholar 

  42. Guo Y, Georgarakis K, Yokoyama Y, Yavari A (2013) On the mechanical properties of TiNb based alloys. J Alloys Compd 571:25–30

    CAS  Google Scholar 

  43. Ureña J, Tabares E, Tsipas S, Jiménez-Morales A, Gordo E (2019) Dry sliding wear behaviour of β-type Ti–Nb and Ti-Mo surfaces designed by diffusion treatments for biomedical applications. J Mech Behav Biomed Mater 91:335–344

    Google Scholar 

  44. Gutiérrez-Moreno J, Guo Y, Georgarakis K, Yavari A, Evangelakis G, Lekka CE (2014) The role of Sn doping in the β-type Ti–25at% Nb alloys: experiment and ab initio calculations. J Alloys Compd 615:S676–S679

    Google Scholar 

  45. Peart R, Tomlin D (1962) Diffusion of solute elements in beta-titanium. Acta Metall 10:123–134

    CAS  Google Scholar 

  46. Gibbs G, Graham D, Tomlin D (1963) Diffusion in titanium and titanium—niobium alloys. Philos Mag 8:1269–1282

    CAS  Google Scholar 

  47. Ibrahim MK, Hamzah E, Nazim E, Bahador A (2018) Parameter optimization of microwave sintering porous Ti-23% Nb shape memory alloys for biomedical applications. Trans Nonferrous Metals Soc China 28:700–710

    CAS  Google Scholar 

  48. Chaves J, Florêncio O, Silva P Jr, Marques P, Afonso C (2015) Influence of phase transformations on dynamical elastic modulus and anelasticity of beta Ti–Nb–Fe alloys for biomedical applications. J Mech Behav Biomed Mater 46:184–196

    CAS  Google Scholar 

  49. Luo X, Liu L, Yang C, Lu H, Ma H, Wang Z et al (2021) Overcoming the strength–ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy. J Mater Sci Technol 68:112–123

    Google Scholar 

  50. Terayama A, Fuyama N, Yamashita Y, Ishizaki I, Kyogoku H (2013) Fabrication of Ti–Nb alloys by powder metallurgy process and their shape memory characteristics. J Alloys Compd 577:S408–S412

    CAS  Google Scholar 

  51. Yang D, Guo Z, Shao H, Liu X, Ji Y (2012) Mechanical properties of porous Ti-Mo and Ti–Nb alloys for biomedical application by gelcasting. Proced Eng 36:160–167

    CAS  Google Scholar 

  52. Kröger H, Venesmaa P, Jurvelin J, Miettinen H, Suomalainen O, Alhava E (1998) Bone density at the proximal femur after total hip arthroplasty. Clin Orthop Relat Res 352:66–74

    Google Scholar 

  53. Khlystov N, Lizardo D, Matsushita K, Zheng J (2013) Uniaxial tension and compression testing of materials. Lab report

  54. Kolli RP, Joost WJ, Ankem S (2015) Phase stability and stress-induced transformations in beta titanium alloys. JOM 67:1273–1280

    CAS  Google Scholar 

  55. Qu W-T, Gong H, Wang J, Nie Y-S, Li Y (2019) Martensitic transformation, shape memory effect and superelasticity of Ti–x Zr–(30–x) Nb–4Ta alloys. Rare Met 38:965–970

    CAS  Google Scholar 

  56. Lobodyuk V (2016) Reversibility of the martensitic transformations and shape-memory effects. Uspehi Fiziki Metallov. https://doi.org/10.15407/ufm.17.02.089

    Article  Google Scholar 

  57. Yuan B, Zheng P, Gao Y, Zhu M, Dunand DC (2015) Effect of directional solidification and porosity upon the superelasticity of Cu–Al–Ni shape-memory alloys. Mater Des 80:28–35

    CAS  Google Scholar 

  58. Prokoshkin S, Brailovski V, Petrzhik M, Filonov MR, Sheremetyev V (2013) Mechanocyclic and time stability of the loading-unloading diagram parameters of nanostructured Ti–Nb-Ta and Ti–Nb-Zr SMA. Materials science forum. Trans Tech Publ, Freienbach, pp 481–485

    Google Scholar 

  59. Saedi S (2017) Shape memory behavior of dense and porous NiTi alloys fabricated by selective laser melting. J Mater Sci Mater Med. https://doi.org/10.1007/s10856-018-6044-6

    Article  Google Scholar 

  60. Stoyanova E, Stoychev D (2012) Corrosion behavior of stainless steels modified by cerium oxides layers. Corrosion resistance. InTech, London

    Google Scholar 

  61. He C, Wang J, Chen Y, Yu W, Tang D (2020) Effects of Sn and Sb on the hot ductility of Nb+ Ti microalloyed steels. Metals 10:1679

    CAS  Google Scholar 

  62. Prakash C, Singh S, Ramakrishna S, Królczyk G, Le CH (2020) Microwave sintering of porous Ti–Nb-HA composite with high strength and enhanced bioactivity for implant applications. J Alloys Compd 824:153774

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Higher Education of Malaysia and Universiti Teknologi Malaysia for providing the financial support under the University Research Grant No. Q.J130000.2524.12H60 and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Khaleel Ibrahim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.K., Hamzah, E. Effect of Ce and Sb Elements Addition on Porous Ti–23 wt%Nb–Sn for Biomedical Applications. Shap. Mem. Superelasticity 7, 515–525 (2021). https://doi.org/10.1007/s40830-021-00353-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-021-00353-y

Keywords

Navigation