Skip to main content

Lattice Defects Generated by Cyclic Thermomechanical Loading of Superelastic NiTi Wire

A Correction to this article was published on 01 March 2021

This article has been updated

Abstract

Cyclic instability of stress–strain–temperature functional responses of NiTi is presumably due to the plastic deformation accompanying martensitic transformation proceeding under external stress. In order to obtain systematic experimental evidence on this, we have performed series of cyclic thermomechanical loading tests (10 cycles) on superelastic NiTi wires with nanocrystalline microstructure, evaluated accumulated unrecovered strains and analysed permanent lattice defects created during the cycling by TEM. The accumulated unrecovered strains and density of lattice defects increased with increasing temperature and stress, at which the forward and/or reverse transformation proceeded. It did not correlate with the temperature and stress applied in the test as such. If the martensitic transformation proceeded at low stress (<100 MPa), the cyclic stress–strain–temperature responses of the wire were found to be almost stable (only marginal accumulated unrecovered strain and few isolated dislocation loops and segments were generated during the thermomechanical cycling). This was the case in thermal cycling at low stresses or in cyclic shape memory test. If the forward and/or reverse martensitic transformation proceeded under large external stress (>250 MPa), the responses were very unstable (large accumulated unrecovered strains and high density of dislocations and deformation bands). A scheme allowing for estimating the cyclic instability of functional behaviours of various NiTi wires in wide range of thermomechanical loading tests was introduced.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Change history

References

  1. 1.

    Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678. https://doi.org/10.1016/j.pmatsci.2004.10.001

    CAS  Article  Google Scholar 

  2. 2.

    Melton KN (1990) Ni-Ti based shape memory alloys. In: Duerig TW, Melton KN, Stoeckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth-Heinmann, England, pp 21–35

    Chapter  Google Scholar 

  3. 3.

    Miyazaki S (1990) Thermal and stress cycling effects and fatigue properties of Ni-Ti alloys. In: Duerig TW, Melton KN, Stoeckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth-Heinmann, England, pp 394–413

    Chapter  Google Scholar 

  4. 4.

    Sedmak P, Šittner P, Pilch J, Curfs C (2015) Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction. Acta Materialia 94:257–270. https://doi.org/10.1016/J.ACTAMAT.2015.04.039

    CAS  Article  Google Scholar 

  5. 5.

    Heller L, Seiner H, Šittner P, Sedlák P, Tyc O, Kadeřávek L (2018) On the plastic deformation accompanying cyclic martensitic transformation in thermomechanically loaded NiTi. Int J Plast 111:53–71. https://doi.org/10.1016/j.ijplas.2018.07.007

    CAS  Article  Google Scholar 

  6. 6.

    Chen Y, Tyc O, Kadeřávek L, Molnárová O, Heller L, Šittner P (2019) Temperature and microstructure dependence of localized tensile deformation of superelastic NiTi wires. Mater Des 174:107797. https://doi.org/10.1016/j.matdes.2019.107797

    CAS  Article  Google Scholar 

  7. 7.

    Šittner P, Molnárová O, Kadeřávek L, Tyc O, Heller L (2020) Deformation twinning in martensite affecting functional behaviour of NiTi shape memory alloys. Materialia 9:100506. https://doi.org/10.1016/j.mtla.2019.100506

    CAS  Article  Google Scholar 

  8. 8.

    Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 378:24–33. https://doi.org/10.1016/J.MSEA.2003.10.327

    Article  Google Scholar 

  9. 9.

    Robertson SW, Pelton AR, Ritchie RO (2012) Mechanical fatigue and fracture of Nitinol. Int Mater Rev 57:1–36. https://doi.org/10.1179/1743280411Y.0000000009

    CAS  Article  Google Scholar 

  10. 10.

    Frenzel J (2020) On the importance of structural and functional fatigue in shape memory technology. Shap Mem Superelasticity 6:213–222. https://doi.org/10.1007/s40830-020-00281-3

    Article  Google Scholar 

  11. 11.

    Simon T, Kroger A, Somsen C, Dlouhy A, Eggeler G (2010) On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Mater 58:1850–1860

    CAS  Article  Google Scholar 

  12. 12.

    Hurley J, Ortega AM, Lechniak J, Gall K, Maier HJ (2003) Structural evolution during the cycling of NiTi shape memory alloys. Int J Mater Res 94:547–552. https://doi.org/10.3139/146.030547

    CAS  Article  Google Scholar 

  13. 13.

    Delville R, Malard B, Pilch J, Sittner P, Schryvers D (2011) Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires. Int J Plast 27:282–297. https://doi.org/10.1016/J.IJPLAS.2010.05.005

    CAS  Article  Google Scholar 

  14. 14.

    Norfleet DM, Sarosi PM, Manchiraju S, Wagner MFX, Uchic MD, Anderson PM, Mills MJ (2009) Transformation-induced plasticity during pseudoelasticdeformation in Ni-Ti microcrystals. Acta Mater 57:3549–3561. https://doi.org/10.1016/j.actamat.2009.04.009

    CAS  Article  Google Scholar 

  15. 15.

    Bowers ML, Chen X, De Graef M, Anderson PM, Mills MJ (2014) Characterization and modeling of defects generated in pseudoelastically deformed NiTi microcrystals. Scr Mater. https://doi.org/10.1016/j.scriptamat.2014.02.001

    Article  Google Scholar 

  16. 16.

    Ezaz T, Wang J, Sehitoglu H, Maier HJ (2013) Plastic deformation of NiTi shape memory alloys. Acta Mater 61:67–78. https://doi.org/10.1016/j.actamat.2012.09.023

    CAS  Article  Google Scholar 

  17. 17.

    Polatidis E, Šmíd M, Kuběna I, Hsu WN, Laplanche G, Van Swygenhoven H (2020) Deformation mechanisms in a superelastic NiTi alloy: An in-situ high resolution digital image correlation study. Mater Design 191:108622. https://doi.org/10.1016/j.matdes.2020.108622

    CAS  Article  Google Scholar 

  18. 18.

    Chowdhury P, Sehitoglu H (2017) Deformation physics of shape memory alloys—Fundamentals at atomistic frontier. Prog Mater Sci 88:49–88. https://doi.org/10.1016/J.PMATSCI.2017.03.003

    CAS  Article  Google Scholar 

  19. 19.

    Paranjape HM, Bowers ML, Mills MJ, Anderson PM (2017) Mechanisms for phase transformation induced slip in shape memory alloy micro-crystals. Acta Mater 132:444–454. https://doi.org/10.1016/j.actamat.2017.04.066

    CAS  Article  Google Scholar 

  20. 20.

    Šittner P, Sedlák P, Seiner H, Sedmák P, Pilch J, Delville R, Heller L, Kadeřávek L (2018) On the coupling between martensitic transformation and plasticity in NiTi: experiments and continuum based modelling. Prog Mater Sci 98:249–298. https://doi.org/10.1016/j.pmatsci.2018.07.003

    CAS  Article  Google Scholar 

  21. 21.

    Šittner P, Heller L, Sedlák P, Chen Y, Tyc O, Molnárová O, Kadeřávek L (2019) B2 ⇒ B19′ ⇒ B2T martensitic transformation as a mechanism of plastic deformation of NiTi. Shap Mem Superelasticity 5:383–396. https://doi.org/10.1007/s40830-019-00250-5

    Article  Google Scholar 

  22. 22.

    Hsu WN, Polatidis E, Smíd M, Van Petegem S, Casati N, Van Swygenhoven H (2019) Deformation and degradation of superelastic NiTi under multiaxialloading. Acta Mater 167:149–158

    CAS  Article  Google Scholar 

  23. 23.

    Bian X, Saleh AA, Pereloma EV, Davies CHJ, Gazder AA (2018) A digital image correlation study of a NiTi alloy subjected to monotonic uniaxial and cyclic loading-unloading in tension. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2018.04.081

    Article  Google Scholar 

  24. 24.

    Sehitoglu H, Wu Y, Alkan S, Ertekin E (2017) Plastic deformation of B2-NiTi—is it slip or twinning? Phil Mag Lett 97:217–228. https://doi.org/10.1080/09500839.2017.1316019

    CAS  Article  Google Scholar 

  25. 25.

    Chowdhury P, Sehitoglu H (2017) Revisit to atomistic rationale for slip in shape memory alloys. Prog Mater Sci 85:1–42

    CAS  Article  Google Scholar 

  26. 26.

    Goo E, Duerig T, Melton K, Sinclair R (1985) Mechanical twinning in Ti50Ni47Fe3 and Ti49Ni51 alloys. Acta Metall 33:1725–1733. https://doi.org/10.1016/0001-6160(85)90167-1

    CAS  Article  Google Scholar 

  27. 27.

    Tyumentsev AN, Surikova NS, Litovchenko IY, Pinzhin YP, Korotaev AD, Lysenko OV (2004) Mechanism of deformation and crystal lattice reorientation in strain localization bands and deformation twins of the B2 phase of titanium nickelide. Acta Mater 52:2067–2074. https://doi.org/10.1016/J.ACTAMAT.2004.01.001

    CAS  Article  Google Scholar 

  28. 28.

    Karaman I, Karaman I, Kulkarni AV, Luo ZP (2005) Transformation behaviour and unusual twinning in a NiTi shape memory alloy ausformed using equal channel angular extrusion. Philos Mag 85:1729–1745. https://doi.org/10.1080/14786430412331331961

    CAS  Article  Google Scholar 

  29. 29.

    Nishida M, Matsuda M, Fujimoto T, Tanaka K, Kakisaka A, Nakashima H (2006) Crystallography of deformation twin boundaries in a B2 type Ti–Ni alloy. Mater Sci Eng, A 438–440:495–499. https://doi.org/10.1016/j.msea.2006.03.111

    CAS  Article  Google Scholar 

  30. 30.

    Ii S, Yamauchi K, Maruhashi Y, Nishida M (2003) Direct evidence of correlation between {2 0 1̄}B19′ and {1 1 4}B2 deformation twins in Ti–Ni shape memory alloy. Scr Mater 49:723–727. https://doi.org/10.1016/S1359-6462(03)00356-7

    CAS  Article  Google Scholar 

  31. 31.

    Moberly WJ, Proft JL, Duerig TW, Sinclair R (1990) Deformation, twinning and thermo-mechanical strengthening of Ti50Ni47Fe3. Acta Metall Mater 38:2601–2612. https://doi.org/10.1016/0956-7151(90)90272-I

    CAS  Article  Google Scholar 

  32. 32.

    Gao Y (2019) Symmetry and pathway analyses of the twinning 1 modes in Ni-Ti shape memory alloys. Materialia 6:100320. https://doi.org/10.1016/j.mtla.2019.100320

    CAS  Article  Google Scholar 

  33. 33.

    Zhang JX, Sato M, Ishida A (2006) Deformation mechanism of martensite in Ti-rich Ti–Ni shape memory alloy thin films. Acta Mater 54:1185–1198. https://doi.org/10.1016/j.actamat.2005.10.046

    CAS  Article  Google Scholar 

  34. 34.

    Chen Y, Tyc O, Kadeřávek L, Molnárová O, Heller L, Šittner P (2019) Recoverability of large strains and deformation twinning in martensite during tensile deformation of NiTi shape memory alloy polycrystals. Acta Mater 180:243–259. https://doi.org/10.1016/j.actamat.2019.09.012

    CAS  Article  Google Scholar 

  35. 35.

    Molnárová O, Tyc O, Heller L, Seiner H, Šittner P (2021) 3D Reconstruction of martensitic microstructures in grains of deformed nanocrystalline NiTi wires by TEM. Acta Mater (submitted). Available at SSRN: https://ssrn.com/abstract=3797420

  36. 36.

    H Seiner, P Sedlák, L Heller, O Molnárová, P Šittner. On the origin of (20–1) interfaces in B19‘ NiTi martensite, in preparation, H. Seiner, The (20¯1) interfaces in plastically formed NiTi martensite - twins or ‘kwinks’? Presentation available online from ASM international, www.asminternational.org/news/videos/-/journal_content/56/10192/42847968/VIDEO

  37. 37.

    Chen Y, Tyc O, Molnárová O, Heller L, Šittner P (2019) Tensile deformation of superelastic NiTi wires in wide temperature and microstructure ranges. Shap Mem Superelasticity 5:42–62. https://doi.org/10.1007/s40830-018-00205-2

    Article  Google Scholar 

  38. 38.

    Sedmák P, Pilch J, Heller L, Kopeček J, Wright J, Sedlák P et al (2016) Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load. Science 353:559–562. https://doi.org/10.1126/science.aad6700

    CAS  Article  Google Scholar 

  39. 39.

    Tyc O, Heller L, Vronka M, Sittner P (2020) Effect of temperature on fatigue of superelastic NiTi wires. Int J Fatigue 134:105470. https://doi.org/10.1016/j.ijfatigue.2020.105470

    CAS  Article  Google Scholar 

  40. 40.

    Pourbabak S, Verlinden B, Van Humbeeck J, Schryvers D (2020) DSC cycling effects on phase transformation temperatures of micron and submicron grain Ni50.8Ti49.2 microwires. Shap Mem Superelasticity 6:232–241. https://doi.org/10.1007/s40830-020-00278-y

    Article  Google Scholar 

  41. 41.

    Heller L, Šittner P, Sedlák P, Seiner H, Tyc O, Kadeřávek L, Sedmák P, Vronka M (2019) Beyond the strain recoverability of martensitic transformation in NiTi. Int J Plast 116:232–264. https://doi.org/10.1016/j.ijplas.2019.01.007

    CAS  Article  Google Scholar 

  42. 42.

    Zhao TX, Kang GZ, Yu CH, Kan QH (2019) Experimental investigation of the cyclic degradation of the one-way shape memory effect of NiTi alloys. Int J Miner Metall Mat 26:1539. https://doi.org/10.1007/s12613-019-1884-8

    CAS  Article  Google Scholar 

  43. 43.

    Šittner P, Vokoun D, Dayananda GN, Stalmans R (2000) Recovery stress generation in shape memory Ti50Ni45Cu5 thin wires. Mater Sci Eng, A 286:298–311. https://doi.org/10.1016/S0921-5093(00)00816-9

    Article  Google Scholar 

  44. 44.

    Liu Y, Xie Z (2007) Detwinning in shape memory alloy. In: Progress in smart materials and structures. Nova Science Publishers, Inc

  45. 45.

    Liu Y, Xie Z (2003) Twinning and detwinning of 0 1 1type II twin in shape memory alloy. Acta Mater 51:5529–5543

    CAS  Article  Google Scholar 

  46. 46.

    Waitz T (2005) The self-accommodated morphology of martensite in nanocrystalline NiTi shape memory alloys. Acta Mater 53:2273–2283. https://doi.org/10.1016/j.actamat.2005.01.033

    CAS  Article  Google Scholar 

  47. 47.

    Petersmann M, Antretter T, Waitz T (2015) Special cases of martensite compatibility: a near single-variant habitplane and the martensite of nanocrystalline NiTi. MATEC Web Conf 33:03015. https://doi.org/10.1051/matecconf/20153303015

    CAS  Article  Google Scholar 

  48. 48.

    Waitz T, Antretter T, Fischer FD, Karnthaler HP (2008) Size effects on martensitic phase transformations in nanocrystalline NiTi shape memory alloys. Mat Sci Technol. https://doi.org/10.1179/174328408X302620

    Article  Google Scholar 

  49. 49.

    Liu Y, Tan G, Miyazaki S (2006) Deformation-induced martensite stabilisation in [1 0 0] single-crystalline Ni–Ti. Mater Sci Eng A438–440:612–616. https://doi.org/10.1016/j.msea.2006.02.130

    CAS  Article  Google Scholar 

  50. 50.

    Casalena L, Bucsek AN, Pagan DC, Hommer GM, Bigelow GS, Obstalecki M, Noebe RD, Mills MJ, Stebner AP (2018) Structure-property relationships of a high strength superelastic NiTi–1Hf alloy. Adv Eng Mater 20:1800046. https://doi.org/10.1002/adem.201800046

    CAS  Article  Google Scholar 

  51. 51.

    Tirry W, Schryvers D (2008) In situ transmission electron microscopy of stress-induced martensite with focus on martensite twinning. Mater Sci Eng A 481–482:420–425. https://doi.org/10.1016/j.msea.2006.12.214

    CAS  Article  Google Scholar 

  52. 52.

    Ahadi A, Sun Q (2014) Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Materialia 76:186–197. https://doi.org/10.1016/j.actamat.2014.05.007

    CAS  Article  Google Scholar 

  53. 53.

    Chen J, Wu Y, Yin H (2020) In situ multi-field investigation of grain size effects on the rate dependent thermomechanical responses of polycrystalline superelastic NiTi. Mater Lett 259:126845. https://doi.org/10.1016/j.matlet.2019.126845

    CAS  Article  Google Scholar 

  54. 54.

    James RD (2015) Taming the temperamental metal transformation. Science 348:968–969. https://doi.org/10.1126/science.aab3273

    CAS  Article  Google Scholar 

  55. 55.

    Chluba C, Ge W, Lima de Miranda R, Strobel J, Kienle L, Quandt E, Wuttig M (2015) Ultralow-fatigue shape memory alloy films. Science 348:1004. https://doi.org/10.1126/science.1261164

    CAS  Article  Google Scholar 

  56. 56.

    Bumke L, Zamponi CH, Jetter J, Quandt E (2020) Cu-rich Ti52.8Ni22.2Cu22.5Co2.5 shape memory alloy films with ultra-low fatigue for elastocaloric applications reference citations were renumbered including their corresponding references in the reference list. Please check if action taken is appropriate. Otherwise, kindly advise us on how to proceed. J Appl Phys 127:225105. https://doi.org/10.1063/5.0006301

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Support from Czech Science Foundation (CSF) projects 18-03834S (P. Šittner), 20-14114S (L. Heller) is acknowledged. MEYS of the Czech Republic is acknowledged for the support of infrastructure projects LNSM (LM2015087), SOLID 21 (CZ.02.1.01/0.0/0.0/16_019/0000760) and European Spallation Source—participation of the Czech Republic—OP (CZ.02.1.01/0.0/0.0/16_013/0001794).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Petr Šittner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in Shape Memory and Superelasticity on the Mechanics and Physics of Active Materials and Systems. This issue was organized by Dr. Theocharis Baxevanis, University of Houston; Dr. Dimitris Lagoudas, Texas A&M University; and Dr. Ibrahim Karaman, Texas A&M University.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tyc, O., Heller, L. & Šittner, P. Lattice Defects Generated by Cyclic Thermomechanical Loading of Superelastic NiTi Wire. Shap. Mem. Superelasticity 7, 65–88 (2021). https://doi.org/10.1007/s40830-021-00315-4

Download citation

Keywords

  • Cyclic Stability
  • Dislocations
  • NiTi Materials
  • Mechanical Behaviour
  • Stress-induced martensitic transformation
  • Twinning
  • Thermal cycling