Skip to main content
Log in

Comparative Study of Shape Memory Effects in Ni-Rich Ti–Ni Alloy After Training in Various Phase States

  • Special Issue: A Tribute to Prof. Dr. Gunther Eggeler, Invited Paper
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Six various training modes were used for a systematic study of the effect of the initial phase state when training procedure on shape memory effect (SME) and two-way SME (TWSME) in nanostructured Ti–50.7 at% Ni alloy. Two types of the B2 austenite structure were chosen: (1) the mixed structure consisting of nanosubgrained and nanograined structures (cold drawing with a true strain of e = 0.6 followed by aging 430 °C, 10 h,) and (2) recrystallized structure (annealing at 700 °C, 20 min followed by the same aging) with the average grain size of 10 μm. The SME and TWSME training procedure was performed in bending under load. Nanostructured material manifests the maximum recovery strain 14–14.7% as a result of using training modes involving R → B19′ transformation under load. The maximum TWSME value of 3.2–3.5% was realized in the material with both structure types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In fact, the elastic and superelastic strains cannot be separated in the described experiment, and therefore the term “apparent” is used.

References

  1. Razov AI (2004) Application of titanium nickelide-based alloys in engineering. Phys Met Metallogr 97(1):97–126

    Google Scholar 

  2. Duerig TW, Melton KN, Stockel D, Wayman CM (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, Oxford

    Google Scholar 

  3. Prokoshkin SD, Ryklina EP, Khmelevskaya IYu, Pushin VG (2004) Application of titanium nickelide-based alloys in medicine. Phys Met Metallogr 97(1):56–96

    Google Scholar 

  4. Polyakova KA, Ryklina EP, Prokoshkin SD (2020) Effect of grain size and ageing-induced microstructure on functional characteristics of a Ti-507 at% Ni alloy. Shape Mem Superelast. https://doi.org/10.1007/s40830-020-00269-z

    Article  Google Scholar 

  5. Ryklina EP, Khmelevskaya IYu, Prokoshkin SD (2004) Use of thermomechanically treated titanium nickelide for medical implants and tools. Met Sci Heat Treat 46(5–6):179–183

    Article  CAS  Google Scholar 

  6. Torra V, Martorell F, Lovey FC, Sade ML (2017) Civil engineering applications: specific properties of NiTi thick wires and their damping capabilities, a review. Shape Mem Superelast 3(4):403–413. https://doi.org/10.1007/s40830-017-0135-y

    Article  Google Scholar 

  7. Sabahi N, Chen W, Wang CH, Kruzic JJ, Li X (2020) A review on additive manufacturing of shape-memory materials for biomedical applications. JOM. https://doi.org/10.1007/s11837-020-04013-x

    Article  Google Scholar 

  8. Ryklina EP, Khmelevskaya IYu, Prokoshkin SD, Ipatkin RV, Turilina VYu, Inaekyan KE (2004) The nickel-titanium device with SME for emergency interruption of blood flow. Mat Sci Eng A 378:519–522. https://doi.org/10.1016/j.msea.2003.12.050

    Article  CAS  Google Scholar 

  9. Khmelevskaya IYu, Ryklina EP, Prokoshkin SD, Markossian GA, Tarutta EP, Iomdina EN (2008) A shape memory device for the treatment of high myopia. Mat Sci Eng A 481–482:651–653. https://doi.org/10.1016/j.msea.2007.02.171

    Article  CAS  Google Scholar 

  10. Prokoshkin SD, Butckevitch AC, Chadaev AP, Ryklina EP, Khmelevskaya IY (1996) Elaboration and description of the first application of nitinol extravessel corrector with the shape memory effect. Proc SPIE 2779:986–990

    Article  CAS  Google Scholar 

  11. Ryklina EP, Khmelevskaya IY, Morozova TV, Prokoshkin SD (1996) Biomedical engineering in design and application of nitinol stents with shape memory effect. Proc SPIE 2779:991–993

    Article  CAS  Google Scholar 

  12. Ryklina E, Korotitskiy A, Khmelevskaya I, Prokoshkin S, Polyakova K, Kolobova A, Soutorine M, Chernov A (2017) Control of phase transformations and microstructure for optimum realization of one-way and two-way shape memory effects in removable surgical clips. Mater Des 136:174–184. https://doi.org/10.1016/j.matdes.2017.09.024

    Article  CAS  Google Scholar 

  13. Khmelevskaya I, Ryklina E, Prokoshkin S, Soutorine M (2013) Peculiarities of behaviour of Ti−50.7% Ni alloy for suturing of blood vessels. J Alloys Compd 577:752–755. https://doi.org/10.1016/j.jallcom.2012.02.040

    Article  CAS  Google Scholar 

  14. Wang X, Kustov S, Li K, Schryvers D, Verlinden B, Humbeeck V (2015) Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti–50.8 at% Ni alloy with micron-sized grains. Acta Mater. 82:224–233. https://doi.org/10.1016/j.actamat.2014.09.018

    Article  CAS  Google Scholar 

  15. Grigorieva V, Danilov A, Razov A (2015) Thermo-mechanical properties of a NiTi-shape memory alloy after dynamic loading. Acta Phys Pol A 128(4):592–596. https://doi.org/10.12693/APhysPolA.128.592

    Article  CAS  Google Scholar 

  16. Gunderov D, Churakova A, Lukyanov A, Prokofiev E, Pushin V, Kreitcberg A, Prokoshkin S (2017) Features of the mechanical behavior of ultrafine-grained and nanostructured TiNi alloys. Mater Today Proc 4:4825–4829. https://doi.org/10.1016/j.matpr.2017.04.078

    Article  Google Scholar 

  17. Wang ZG, Zu XT, Fu P, Dai JY, Zhu S, Wang LM (2003) Two-way shape memory effect of NiTi alloy coil extension springs. Mat Sci Eng A 360(1):126–131. https://doi.org/10.1016/S0921-5093(03)00376-9

    Article  CAS  Google Scholar 

  18. Liu Y, Lui Y, Humbeeck J (1999) Two-way shape memory effect developed by martensite deformation in NiTi. Acta Mater 47(1):199–209. https://doi.org/10.1016/S0921-5093(03)00376-9

    Article  CAS  Google Scholar 

  19. Brailovski V, Prokoshkin SD, Khmelevskaya IYu, Inaekyan KE, Demers V, Bastarache E, Dobatkin SV, Tatyanin EV (2006) Interrelations between the properties and structure of thermomechanically-treated equiatomic Ti-Ni alloy. Mat Sci Eng A 438–440:597–601

    Article  Google Scholar 

  20. Gunderov DV, Maksutova G, Churakova A, Lukyanova A, Kreitcberg A, Raab GI, Sabirov I, Prokoshkin S (2015) Strain rate sensitivity and deformation activation volume of coarse-grained and ultrafine-grained TiNi alloys. Scr Mater 102:99–102. https://doi.org/10.1016/j.scriptamat.2015.02.023

    Article  CAS  Google Scholar 

  21. Šittner P, Molnárová O, Kadeřávek L, Tyc O, Heller L (2020) Deformation twinning in martensite affecting functional behavior of NiTi shape memory alloys. Materialia. https://doi.org/10.1016/j.mtla.2019.100506

    Article  Google Scholar 

  22. Polyakova K, Ryklina E, Prokoshkin S (2017) Thermomechanical response of titanium nickelide on austenite grain/subgrain size. Mater Today 4(3):4836–4840. https://doi.org/10.1016/j.matpr.2017.04.080

    Article  Google Scholar 

  23. Polyakova-Vachiyan KA, Ryklina EP, Prokoshkin SD, Dubinskii SM (2016) Dependence of the functional characteristics of thermomechanically processed titanium nickelide on the size of the structural elements of austenite. Phys Met Metallogr 117(8):817–827. https://doi.org/10.1134/S0031918X16080123

    Article  CAS  Google Scholar 

  24. Ryklina EP, Prokoshkin SD, Chernavina AA, Perevoshchikova NN (2010) Investigation on the influence of thermomechanical conditions of induction and structure on the shape memory effects in Ti−Ni alloy. Inorg Mater Appl 1(3):188–194. https://doi.org/10.1134/S2075113310030032

    Article  Google Scholar 

  25. Kolobova AYu, Ryklina EP, Prokoshkin SD, Inaekyan KE, Brailovskii V (2018) Study of the evolution of the structure and kinetics of martensitic transformations in a titanium nickelide upon isothermal annealing after hot helical rolling. Phys Met Metallogr 119(2):134–145. https://doi.org/10.1134/S0031918X17120079

    Article  CAS  Google Scholar 

  26. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Progr Mater Sci 50:511–678. https://doi.org/10.1016/j.pmatsci.2004.10.001

    Article  CAS  Google Scholar 

  27. ASTM F2004–2005 (2010) Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis

  28. Kuranova NN, Gunderov DV, Uksusnikov AN, Luk’yanov AV, Yurchenko LI, Prokof’ev EA, Pushin VG, Valiev RZ (2009) Effect of heat treatment on the structural and phase transformations and mechanical properties of TiNi alloy subjected to severe plastic deformation by torsion. Phys. Metals Metallogr. 108:556–568. https://doi.org/10.1134/S0031918X09120060

    Article  Google Scholar 

  29. Pushin VG, Kondrat’ev VV, Khachin VN (1998) Pre-transition phenomenon and martensituic transformations. UrB Russian Academy of Science, Ekaterinburg (In Russian)

    Google Scholar 

  30. Zeldovich V, Sobyanina G, Rinkevich O (1996) Influence of pre-strain on shape memory effects and martensite structure in titanium nickelide. Dilatometric effects of MTs. Phys Metals Metallogr 81:107–116

    CAS  Google Scholar 

  31. Ryklina EP, Polyakova KA, Tabachkova NYu, Resnina NN, Prokoshkin SD (2018) Effect of B2 austenite grain size and ageing time on microstructure and transformation behavior of thermomechanically treated titanium nickelide. J Alloys Compd 764:626–638. https://doi.org/10.1016/j.jallcom.2018.06.102

    Article  CAS  Google Scholar 

  32. Khalil-Allafi J, Dlouhy A, Eggeler G (2002) Ni4Ti3-precipitation during ageing of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater 50:4255–4274. https://doi.org/10.1016/S1359-6454(02)00257-4

    Article  CAS  Google Scholar 

  33. Ryklina EP, Prokoshkin S, Chernavina AA, Perevoshchikova NN (2008) On functional behavior of strain-aged Ti-Ni alloy advances in science and technology. Adv Sci Technol 59:162–167. https://doi.org/10.4028/www.scientific.net/AST.59.162

    Article  CAS  Google Scholar 

  34. Ryklina EP, Prokoshkin SD, Chernavina AA (2013) Peculiarities of implementation of abnormally high shape memory effects in thermomechanically treated Ti−Ni alloys. Inorg Mater Appl 4(4):348–355. https://doi.org/10.1134/S2075113313040096

    Article  Google Scholar 

  35. Brailovski V, Prokoshkin SD, Inaekyan KE, Demers V, Khmelevskaya IYu, Dobatkin SV, Tatyanin EV (2006) Structure and properties of the Ti–50.0 at%Ni alloy after strain hardening and nanocrystallizing thermomechanical processing. Mater Trans 47:795–804. https://doi.org/10.2320/matertrans.47.795

    Article  CAS  Google Scholar 

  36. Treppmann D, Hornbogen E, Wurzel D (1995) The effect of combined recrystallization and precipitation process on functional and structural properties in NiTi Alloys. J Phys IV 5(C8):569–574. https://doi.org/10.1051/jp4/199558569

    Article  CAS  Google Scholar 

  37. Karbakhsh Ravari B, Farjami S, Nishida M (2014) Effects of Ni concentration and ageing conditions on multistage martensitic transformation in aged Ni-rich Ti-Ni alloys. Acta Mater 69:17–29. https://doi.org/10.1016/j.actamat.2014.01.028

    Article  CAS  Google Scholar 

  38. Zeldovich VI, Sobyanina GA, Pushin VG, Khachin VN (1994) Phase transformations in titanium nickelide alloys II. Ageing process under under continuous cooling. Phys Metals Metallogr 77:114–120. https://doi.org/10.1142/9789812799197_0004

    Article  CAS  Google Scholar 

  39. Tirry W, Schryvers D (2004) High resolution TEM study of Ni4Ti3 precipitates in austenitic Ni51Ti49. Mater Sci Eng A 378:157–160. https://doi.org/10.1016/j.msea.2003.10.336

    Article  CAS  Google Scholar 

  40. Yang Z, Tirry W, Schryvers D (2005) Analytical TEM investigations on concentration gradients surrounding Ni4Ti3 precipitates in Ni–Ti shape memory material. Scr Mater 52:1129–1134. https://doi.org/10.1016/j.scriptamat.2005.02.013

    Article  CAS  Google Scholar 

  41. Ryklina EP, Prokoshkin SD, Kreytsberg AYu (2013) Abnormally high recovery strain in Ti-Ni-based shape alloys. J Alloys Compd 577:255–258. https://doi.org/10.1016/j.jallcom.2012.02.138

    Article  CAS  Google Scholar 

  42. Chumlyakov Yu, Kireeva I, Panchenko E, Karaman I, Maier HJ, Timofeeva E (2013) Shape memory effect and high-temperature superelasticity in high-strength single crystals. J Alloys Compd 577:393–398. https://doi.org/10.1016/j.jallcom.2012.02.003

    Article  CAS  Google Scholar 

  43. Chumlyakov YuI, Kireeva IV, Panchenko EY, Timofeeva EE, Kretinina IV, Kuts OA (eds) (2015) Shape memory alloys: properties technologies opportunities. Trans Tech Publication, Zurich, pp 107–173

    Google Scholar 

  44. Prokoshkin SD, Korotitskiy AV, Brailovski V, Inaekyan KE, Dubinskiy SM (2011) Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti-Ni shape memory alloys. Phys Metals Metallogr 112:170–187. https://doi.org/10.1134/S0031918X11020244

    Article  Google Scholar 

Download references

Acknowledgements

The work was carried out with the financial support of the Russian Science Foundation (Project No. 19-79-10270). The DSC study was performed by Prof. N. N. Resnina using the facilities of Saint-Petersburg State University (Russian Federation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ryklina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special issue of Shape Memory and Superelasticity to honor Prof. Dr.-Ing. Gunther Eggeler. This special issue was organized by Prof. Hüseyin Sehitoglu, University of Illinois at Urbana-Champaign, and Prof. Dr.-Ing. Hans Jürgen Maier, Leibniz Universität Hannover.)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryklina, E., Polyakova, K. & Prokoshkin, S. Comparative Study of Shape Memory Effects in Ni-Rich Ti–Ni Alloy After Training in Various Phase States. Shap. Mem. Superelasticity 6, 157–169 (2020). https://doi.org/10.1007/s40830-020-00279-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-020-00279-x

Keywords

Navigation