Skip to main content
Log in

Strain Glass and Novel Properties

  • SMST2019
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Strain glass, a conjugate state to martensite, is emerging as an important concept in our understanding of martensitic materials. It resolves many puzzling phenomena, and potentially provides a mechanism for novel properties that are absent in conventional martensitic alloys. This article reviews the progress of strain glass research from its fundamental characterization to the interesting properties to which it leads. We first give a brief introduction of the origin and evidence of strain glass, showing nano-domains as the microscopic basis for understanding its properties. Then we demonstrate that the strain glass state can exhibit many unexpected properties such as a shape-memory effect, superelasticity with a narrow hysteresis over a wide temperature range, high damping and low modulus over a wide temperature, Invar and Elinvar effects, elastocaloric effects, and low-field-triggered large magnetostriction. Lastly, some remaining challenges and opportunities, as well as some ongoing works about the strain glass are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sarkar S, Ren X, Otsuka K (2005) Evidence for strain glass in the ferroelastic-martensitic system Ti50−xNi50+x. Phys Rev Lett 95:205702

    Article  Google Scholar 

  2. Ren X, Wang Y, Zhou Y, Zhang Z, Wang D, Fan G, Otsuka K, Suzuki T, Ji Y, Zhang J, Tian Y, Hou S, Ding X (2010) Strain glass in ferroelastic systems: Premartensitic tweed versus strain glass. Philos Mag 90(1–4):141–157

    Article  CAS  Google Scholar 

  3. Ji Y, Wang D, Wang Y, Zhou Y, Xue D, Otsuka K, Wang Y, Ren X (2017) Ferroic glasses. npj Comput. Mater. 3:43

    Article  Google Scholar 

  4. Ren X (2014) Strain glass and ferroic glass – Unusual properties from glassy nanodomains. Phys. Status Solidi B 251(10):1982–1992

    Article  CAS  Google Scholar 

  5. Ji Y, Ren S, Wang D, Wang Y, Ren X (2018) Strain glasses, in: Frustrated Materials and Ferroic Glasses, Springer, Berlin.

    Chapter  Google Scholar 

  6. Wang Y, Ren X, Otsuka K, Saxena A (2007) Evidence for broken ergodicity in strain glass. Phys Rev B 76(13):132201

    Article  Google Scholar 

  7. Wang Y, Ren X, Otsuka K, Saxena A (2008) Temperature–stress phase diagram of strain glass Ti48. 5Ni51.5. Acta Mater 56(12): 2885–2896

    Article  CAS  Google Scholar 

  8. Ji Y, Wang D, Ding X, Otsuka K, Ren X (2015) Origin of an isothermal R-martensite formation in Ni-rich Ti-Ni solid solution: Crystallization of strain glass. Phys. Rev. Lett. 114:055701

    Article  Google Scholar 

  9. Wang Y, Zhou Y, Zhang J, Ding X, Yang S, Song X, Ren X, Otsuka K (2010) Evolution of the relaxation spectrum during the strain glass transition of Ti48. 5Ni51.5 alloy. Acta Mater 58(14): 4723–4729

  10. Ren X, Kakeshita T, Fukuda T, Saxena A, Planes A (2012) Strain glass and strain glass transition, in: Disorder and Strain-Induced Complexity in Functional Materials. Springer Series in Materials Science Springer Berlin Heidelberg New York 148:201–225

    Google Scholar 

  11. Zhang Z, Wang Y, Wang D, Zhou Y, Otsuka K, Ren X (2010) Phase diagram of Ti50−xNi50+ x: Crossover from martensite to strain glass. Phys Rev B 81(22):224102

    Article  Google Scholar 

  12. Hao Y, Ji Y, Zhang Z, Yin M, Liu C, Zhao H, Otsuka K, Ren X (2019) Strain glass in Ti50−xNi35+xCu15 shape memory alloys. Scripta Mater 168(15):71–75

    Article  CAS  Google Scholar 

  13. Wang D, Zhang Z, Zhang J, Zhou Y, Wang Y, Ding X, Wang Y, Ren X (2010) Strain glass in Fe-doped Ti–Ni. Acta Mater 58(18):6206–6215

    Article  CAS  Google Scholar 

  14. Zhou Y, Xue D, Ding X, Wang Y, Zhang J, Zhang Z, Wang D, Otsuka K, Sun J, Ren X (2010) Strain glass in doped Ti50(Ni50−xDx) (D= Co, Cr, Mn) alloys: Implication for the generality of strain glass in defect-containing ferroelastic systems. Acta Mater 58(16):5433–5442

    Article  CAS  Google Scholar 

  15. Ji Y, Ding X, Lookman T, Otsuka K, Ren X (2013) Heterogeneities and strain glass behavior: Role of nanoscale precipitates in low-temperature-aged Ti48.7Ni51.3 alloys. Phys Rev B 87(10): 104110

  16. Liang Q, Wang D, Zhang J, Ji Y, Ding X, Wang Y, Ren X, Wang Y (2017) Novel B19′ strain glass with large recoverable strain. Phys Rev Mater 1(3):033608

    Article  Google Scholar 

  17. Zhou Y, Xue D, Ding X, Otsuka K, Sun J, Ren X (2009) High temperature strain glass in Ti50(Pd50−xCrx) alloy and the associated shape memory effect and superelasticity. Appl Phys Lett 95(15):151906

    Article  Google Scholar 

  18. Wang Y, Gao J, Wu H, Yang S, Ding X, Wang D, Ren X, Wang Y, Song X, Gao J (2014) Strain glass transition in a multifunctional β-type Ti alloy. Sci Rep 4:3995

    Article  Google Scholar 

  19. Wang Y, Huang C, Gao J, Yang S, Ding X, Song X, Ren X (2012) Evidence for ferromagnetic strain glass in Ni-Co-Mn-Ga Heusler alloy system. Appl Phys Lett 101(10):101913

    Article  Google Scholar 

  20. Wang Y, Huang C, Wu H, Gao J, Yang S, Wang D, Ding X, Song X, Ren X (2013) Spontaneous strain glass to martensite transition in ferromagnetic Ni-Co-Mn-Ga strain glass. Appl Phys Lett 102(14):141909

    Article  Google Scholar 

  21. Ma H, Yang J, Lu F, Qin F, Xiao W, Zhao X (2018) A FeNiMnC alloy with strain glass transition. Prog Nat Sci-Mater 28(1):74–77

    Article  CAS  Google Scholar 

  22. Ren S, Xue D, Ji Y, Liu X, Yang S, Ren X (2017) Low-field-triggered large magnetostriction in iron-palladium strain glass alloys. Phys Rev Lett 119(12):125701

    Article  Google Scholar 

  23. Yao Y, Yang Y, Ren S, Zhou C, Li L, Ren X (2012) Ferroelastic and strain glass transition in (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3 solid solution. Europhys Lett 100(1): 17004

  24. Ni Y, Zhang Z, Wang D, Wang Y, Ren X (2013) The effect of point defects on ferroelastic phase transition of lanthanum-doped calcium titanate ceramics. J. Alloys Compd 577:S468–S471

    Article  CAS  Google Scholar 

  25. Ji Y, Zhang P, He L, Wang D, Luo H, Otsuka K, Wang Y, Ren X (2019) Tilt strain glass in Sr and Nb co-doped LaAlO3 ceramics. Acta Mater 168:250–260

    Article  CAS  Google Scholar 

  26. Wang Y, Ren X, Otsuka K (2006) Shape memory effect and superelasticity in a strain glass alloy. Phys Rev Lett 97(22):225703

    Article  Google Scholar 

  27. Qin F, Lu F, Chen Y, Yang J, Zhao X (2018) Deformation induced Elinvar behavior in Fe-Ni Invar alloy. Sci Bull 63(16):1040–1042

    Article  CAS  Google Scholar 

  28. Wang D, Hou S, Wang Y, Ding X, Ren S, Ren X, Wang Y (2014) Superelasticity of slim hysteresis over a wide temperature range by nanodomains of martensite. Acta Mater 66:349–359

    Article  CAS  Google Scholar 

  29. Zhang J, Wang Y, Ding X, Zhang Z, Zhou Y, Ren X, Otsuka K, Sun J, Song M (2011) Stress-induced strain glass to martensite (R) transition in a Ti50Ni44.5Fe5.5 alloy. Phys Rev B 83(17): 174204

  30. Tang Z, Wang Y, Liao X, Wang D, Yang S, Song X (2015) Stress dependent transforming behaviors and associated functional properties of a nano-precipitates induced strain glass alloy. J Alloys Compd 622:622–627

    Article  CAS  Google Scholar 

  31. Wang D, Ke X, Wang Y, Gao J, Wang Y, Zhang L, Yang S, Ren X (2012) Phase diagram of polar states in doped ferroelectric systems. Phys Rev B 86(5):054120

    Article  Google Scholar 

  32. Wang D, Wang Y, Zhang Z, Ren X (2010) Modeling abnormal strain states in ferroelastic systems: the role of point defects. Phys Rev Lett 105(20):205702

    Article  Google Scholar 

  33. Zhou Y, Xue D, Tian Y, Ding X, Guo S, Otsuka K, Sun J, Ren X (2014) Direct evidence for local symmetry breaking during a strain glass transition. Phys Rev Lett 112(2):025701

    Article  Google Scholar 

  34. Kustov S, Salas D, Cesari E, Santamarta R, Mari D, Van Humbeeck J (2014) Structural anelasticity, elasticity and broken ergodicity in Ni–Ti shape memory alloys. Acta Mater 73:275–286

    Article  CAS  Google Scholar 

  35. Ji Y, Ding X, Wang D, Otsuka K, Ren X (2015) Glass-ferroic composite caused by the crystallization of ferroic glass. Phys Rev B 92:241114(R)

    Article  Google Scholar 

  36. Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  37. Nii Y, Arima TH, Kim HY, Miyazaki S (2010) Effect of randomness on ferroelastic transitions: Disorder-induced hysteresis loop rounding in Ti-Nb-O martensitic alloy. Phys Rev B 82(21):214104

    Article  Google Scholar 

  38. Wang DP, Chen X, Nie ZH, Li N, Wang ZL, Ren Y, Wang YD (2012) Transition in superelasticity for Ni55−xCoxFe18Ga27 alloys due to strain glass transition. Europhys Lett 98(4):46004

    Article  Google Scholar 

  39. Niitsu K, Omori T, Kainuma R (2013) Stress-induced transformation behaviors at low temperatures in Ti-51.8Ni (at.%) shape memory alloy. Appl Phys Lett 102(23): 231915

  40. Zhou Y, Xue D, Ding X, Otsuka K, Sun J, Ren X (2014) High temperature strain glass transition in defect doped Ti–Pd martensitic alloys. Phys Status Solidi B 251(10):2027–2033

    Article  CAS  Google Scholar 

  41. Saito T, Furuta T, Hwang JH, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakuma T (2003) Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300(5618):464–467

    Article  CAS  Google Scholar 

  42. Kwon HI, Kim IS (1995) A positron annihilation study of defects in extra high purity Ti with various deformation and annealing treatments. Scr Metall Mater 32(4):607

    Article  CAS  Google Scholar 

  43. Kim H Y, Wei L, Kobayashi S, Tahara M, Miyazaki S (2013) Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti-23Nb-2Zr-0.7Ta-1.2O alloy. Acta Mater 61(13): 4874–4886

    Article  CAS  Google Scholar 

  44. Ogawa Y, Ando D, Sutou Y, Koike J (2016) A lightweight shape-memory magnesium alloy. Science 353(6297):368–370

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51701150, 51431007, 51621063, and 51831006), Program for Changjiang Scholars and Innovative Research Team in University (IRT_17R85), China Postdoctoral Science Foundation (2017M610637), and 111 Project 2.0 (BP2018008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanchao Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Ji, Y. & Ren, X. Strain Glass and Novel Properties. Shap. Mem. Superelasticity 5, 299–312 (2019). https://doi.org/10.1007/s40830-019-00252-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-019-00252-3

Keywords

Navigation