Skip to main content
Log in

On the Oxidation Behavior and Its Influence on the Martensitic Transformation of Ti–Ta High-Temperature Shape Memory Alloys

  • SPECIAL ISSUE: HTSMA 2018, INVITED PAPER
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

In the present work, the influence of oxidation on the martensitic transformation in Ti–Ta high-temperature shape memory alloys is investigated. Thermogravimetric analysis in combination with microstructural investigations by scanning electron microscopy and transmission electron microscopy were performed after oxidation at 850 °C and at temperatures in the application regime of 450 °C and 330 °C for 100 h, respectively. At 850 °C, internal oxidation results in the formation of a mixed layered scale of TiO2 and β-Ta2O5, associated with decomposition into Ta-rich bcc β-phase and Ti-rich hexagonal α-phase in the alloy. This leads to a suppression of the martensitic phase transformation. In addition, energy dispersive X-ray analysis suggests an oxygen stabilization of the α-phase. At 450 °C, a slow decomposition into Ta-rich β-phase and Ti-rich α-phase is observed. After oxidation at 330 °C, the austenitic matrix shows strong precipitation of the ω-phase that suppresses the martensitic transformation on cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Taken from location b in (a). c and d Electron diffraction patterns taken at locations c and d highlighted in (b). e HAADF STEM image of the TEM lamella taken from the position e highlighted in (a). f and g Electron diffraction patterns taken at locations f and g highlighted in (e)

Fig. 3
Fig. 4

The image was taken in a grain of the Ti70Ta30 alloy after oxidation at 450 °C for 100 h similar to point (f) marked in Fig. 3e. Two FFTs calculated from the matrix (FFT1) and the precipitate (FFT2) are given

Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Duerig TW, Pelton AR (1994) Ti–Ni shape memory alloys. Materials properties handbook: titanium alloys. Knovel, New York, pp 1035–1048

    Google Scholar 

  2. Otsuka K, Ren X (1999) Recent developments in the research of shape memory alloys. Intermetallics 7:511–528

    Article  Google Scholar 

  3. Noebe R, Gaydosh D, Padula S II, Garg A, Biles T, Nathal M (2005) Properties and potential of two (Ni, Pt) Ti alloys for use as high-temperature actuator materials. Smart Struct Mater 2005:364–376

    Google Scholar 

  4. Meng XL, Zheng YF, Cai W, Zhao LC (2004) Two-way shape memory effect of a TiNiHf high temperature shape memory alloy. J Alloy Compd 372:180–186

    Article  Google Scholar 

  5. Russell SM, Sczerzenie F (1995) Engineering considerations in the application of NiTiHf and NiAI as practical high-temperature shape memory alloys. In: MRS Proceedings, pp 455–460

  6. Kim HY, Ohmatsu Y, Kim JI, Hosoda H, Miyazaki S (2004) Mechanical properties and shape memory behavior of Ti–Mo–Ga alloys. Mater Trans 45:1090–1095

    Article  Google Scholar 

  7. Maeshima T, Nishida M (2004) Shape memory properties of biomedical Ti–Mo–Ag and Ti–Mo–Sn alloys. Mater Trans 45:1096–1100

    Article  Google Scholar 

  8. Miyazaki S, Kim HY, Hosoda H (2006) Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng A 438–440:18–24

    Article  Google Scholar 

  9. Kim HY, Ikehara Y, Kim JI, Hosoda H, Miyazaki S (2006) Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater 54:2419–2429

    Article  Google Scholar 

  10. Buenconsejo PJS, Kim HY, Hosoda H, Miyazaki S (2009) Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater 57:1068–1077

    Article  Google Scholar 

  11. Chakraborty T, Rogal J, Drautz R (2016) Unraveling the composition dependence of the martensitic transformation temperature: a first-principles study of Ti–Ta alloys. Phys Rev B 94:224104

    Article  Google Scholar 

  12. Niendorf T, Krooß P, Batyrsina E, Paulsen A, Frenzel J, Eggeler G, Maier HJ (2014) On the functional degradation of binary titanium–tantalum high-temperature shape memory alloys: a new concept for fatigue life extension. Funct Mater Lett 07:1450042

    Article  Google Scholar 

  13. de Fontaine D, Paton E, Williams JC (1971) The omega phase transformation in titanium alloys as an example of displacement controlled reactions. Acta Mater 1971:1154–1162

    Google Scholar 

  14. Hickman BS (1969) The formation of omega phase in titanium and zirconium alloys: a review. J Mater Sci 4:554–563

    Article  Google Scholar 

  15. Miyazaki S, Kim HY, Buenconsejo PJS (2009) Development of high temperature Ti–Ta shape memory alloys. In: ESOMAT 2009: 8th European Symposium on Martensitic Transformations, EDP Sciences, Les Ulis, France

  16. Prokoshkin DA, Voronova TA, Gorbova AS (1984) Investigation into oxidation kinetics for Ta-Ti alloys. Izvestiya Akademii Nauk SSSR, Metally, pp 178–180

  17. Chen YS, Rosa CJ (1980) Oxidation characteristics of Ti–4.37 wt.% Ta alloy in the temperature range 1258–1473 K. Oxid Met 14:167–185

    Article  Google Scholar 

  18. Schmidt FF, Klopp WD, Maykuth DJ, Ogden HR, Jaffee RI (1961) Investigation of the properties of tantalum and its alloys, WADD Technical Report 1961

  19. Schmidt FF, Klopp WD, Albrecht WD, Holden FC, Ogden HR, Jaffee RI (1960) Investigation of the properties of tantalum and its alloys, WADD Technical Report 1959

  20. Klopp WD, Maykuth DJ, Jaffee RI (1961) Effects of alloying on the oxidation behavior of tantalum. Trans ASM 53:637

    Google Scholar 

  21. Michael AB (1959) The oxidation of columbian base and tantalum base alloys. React Met 1959:587–607

    Google Scholar 

  22. Maynor HW, Barrett BR, Swift RE (1956) Scaling of titanium and titanium-based alloys in air. Corros NACE 12:49–60

    Article  Google Scholar 

  23. Park Y, Butt DP (1999) Composition dependence of the kinetics and mechanisms of thermal oxidation of titanium-tantalum alloys. Oxid Met 51:383–402

    Article  Google Scholar 

  24. Hanrahan RJ, Butt DP (1997) Oxidation kinetics and mechanisms of Ti–Ta alloys. Oxid Met 47:317–353

    Article  Google Scholar 

  25. Zhang J, Rynko R, Frenzel J, Somsen C, Eggeler G (2014) Ingot metallurgy and microstructural characterization of Ti–Ta alloys. IJMR 105:156–167

    Article  Google Scholar 

  26. Murray JL (1981) The Ta–Ti (tantalum–titanium) system. Bull Alloy Phase Diagr 2:62–66

    Article  Google Scholar 

  27. Garg SP, Krishnamurthy N, Awasthi A, Venkatraman M (1996) The O–Ta (oxygen–tantalum) system. J Phase Equilib 17:63–77

    Article  Google Scholar 

  28. Murray JL, Wriedt HA (1987) The O–Ti (oxygen–titanium) system. Bull Alloy Phase Diagr 1987:148–165

    Article  Google Scholar 

  29. Bieler TR, Trevino RM, Zeng L, Franco B, Gerald LL, Peter W (2005) Alloys: titanium. Encyclopedia of condensed matter physics. Elsevier, Amsterdam, pp 65–76

    Chapter  Google Scholar 

  30. Peters M, Hemptenmacher J, Kumpfert J, Leyens C (2007) Titan und Titanlegierungen: Struktur, Gefüge, Eigenschaften. In: Titan und Titanlegierungen, pp 1–37

  31. Buenconsejo PJS, Kim HY, Miyazaki S (2009) Effect of ternary alloying elements on the shape memory behavior of Ti–Ta alloys. Acta Mater 57:2509–2515

    Article  Google Scholar 

  32. Rynko R, Marquardt A, Paulsen A, Frenzel J, Somsen C, Eggeler G (2015) Microstructural evolution in a Ti–Ta high-temperature shape memory alloy during creep. Int J Manag Rev 106:331–341

    Google Scholar 

Download references

Acknowledgements

Financial support by Deutsche Forschungsgemeinschaft within the Research Unit Program 1766 “Hochtemperatur-Formgedächtnislegierungen” (Project Nos.: 200999873, TP1 and TP2) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Langenkämper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langenkämper, D., Paulsen, A., Somsen, C. et al. On the Oxidation Behavior and Its Influence on the Martensitic Transformation of Ti–Ta High-Temperature Shape Memory Alloys. Shap. Mem. Superelasticity 5, 63–72 (2019). https://doi.org/10.1007/s40830-018-00206-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-018-00206-1

Keywords

Navigation