Skip to main content
Log in

Reconciling Experimental and Theoretical Data in the Structural Analysis of Ti–Ta Shape-Memory Alloys

  • Special Issue: HTSMA 2018, Invited Paper
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

The structural characterization of the various phases that occur in Ti–Ta-based high-temperature shape-memory alloys is complicated by the presence of many competing phases as a function of composition. In this study, we resolve apparent inconsistencies between experimental data and theoretical calculations by suggesting that phase separation and segregation of undesired phases are not negligible in these alloys, and that finite temperature effects should be taken into account in the modeling of these materials. Specifically, we propose that the formation of the ω phase at low Ta content and of the σ phase at high Ta content implies a difference between the nominal alloy composition and the actual composition of the martensitic and austenitic phases. In addition, we show that temperature affects strongly the calculated values of the order parameters of the martensitic transformation occurring in Ti–Ta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Van Humbeeck J (1999) High temperature shape memory alloys. J Eng Mater Technol 121(1):98–101

    Article  Google Scholar 

  2. Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315

    Article  Google Scholar 

  3. Eckelmeyer KH (1976) The effect of alloying on the shape memory phenomenon in nitinol. Scr Metall 10(8):667–672

    Article  Google Scholar 

  4. Angst DR, Thoma PE, Kao MY (1995) The effect of hafnium content on the transformation temperatures of Ni49Ti51−xHfx shape memory alloys. J Phys IV 5(C8):747–752

    Google Scholar 

  5. Karaca HE, Saghaian SM, Ded G, Tobe H, Basaran B, Maier HJ, Noebe RD, Chumlyakov YI (2013) Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater 61(19):7422–7431

    Article  Google Scholar 

  6. Kockar B, Karaman I, Kim JI, Chumlyakov YI (2006) A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys. Scr Mater 54(12):2203–2208

    Article  Google Scholar 

  7. Saghaian SM, Karaca HE, Tobe H, Turabi AS, Saedi S, Saghaian SE, Chumlyakov YI, Noebe RD (2017) High strength NiTiHf shape memory alloys with tailorable properties. Acta Mater 134:211–220

    Article  Google Scholar 

  8. Evirgen A, Pons J, Karaman I, Santamarta R, Noebe RD (2018) H-phase precipitation and martensitic transformation in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr high-temperature shape memory alloys. Shap Mem Superelast 4(1):85–92

    Article  Google Scholar 

  9. Swann PR, Warlimont H (1963) The electron-metallography and crystallography of copper-aluminum martensites. Acta Metall 11(6):511–527

    Article  Google Scholar 

  10. Recarte V, Pérez-Sáez RB, Bocanegra EH, Nó ML, San Juan J (1999) Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys. Mater Sci Eng A 273:380–384

    Article  Google Scholar 

  11. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678

    Article  Google Scholar 

  12. Bagarjatskii YA, Nosova GI, Tagunova TV (1958) Laws of formation of metastable phase in titanium alloys. Dokl. Akad. Nauk SSSR 122(4):593–596 in Russian

    Google Scholar 

  13. Bywater KA, Christian JW (1972) Martensitic transformations in titanium-tantalum alloys. Philos. Mag. 25(6):1249–1273

    Article  Google Scholar 

  14. Fedotov SG, Chelidze TV, Kovneristyj YK, Sanadze VV (1985) Phase structure, critical points Ms and As of martensitic transformation and elastic properties of metastable alloys of the Ti–Ta system. Fiz Met Metalloved 60(3):567–570 in Russian

    Google Scholar 

  15. Fedotov SG, Chelidze TV, Kovneristyj YK, Sanadze VV (1986) Phase transformation in metastable alloys of the Ti–Ta system during heating. Fiz Met Metalloved 62(2):328–332 in Russian

    Google Scholar 

  16. Petrzhik MI, Fedotov SG, Kovneristyi YK, Zhebyneva NF (1992) Effect of thermal cycling on the structure of quenched alloys of the Ti–Ta–Nb system. Met Sci Heat Treat 34(3–4):190–193

    Article  Google Scholar 

  17. Buenconsejo PJS, Kim HY, Hosoda H, Miyazaki S (2009) Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater 57(4):1068–1077

    Article  Google Scholar 

  18. Buenconsejo PJS, Kim HY, Miyazaki S (2009) Effect of ternary alloying elements on the shape memory behavior of Ti–Ta alloys. Acta Mater 57(8):2509–2515

    Article  Google Scholar 

  19. Buenconsejo PJS, Kim HY, Miyazaki S (2011) Novel β-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scr Mater 64(12):1114–1177

    Article  Google Scholar 

  20. Kim HY, Fukushima T, Buenconsejo PJS, Nam TH, Miyazaki S (2011) Martensitic transformation and shape memory properties of Ti–Ta–Sn high temperature shape memory alloys. Mater Sci Eng A 528(24):7238–7246

    Article  Google Scholar 

  21. Zheng XH, Sui JH, Zhang X, Yang ZY, Wang HB, Tian XH, Cai W (2013) Thermal stability and high-temperature shape memory effect of Ti–Ta–Zr alloy. Scr Mater 68(12):1008–1011

    Article  Google Scholar 

  22. Zhang J, Rynko R, Frenzel J, Somsen C, Eggeler G (2014) Ingot metallurgy and microstructural characterization of Ti–Ta alloys. Int J Mater Res 105(2):156–167

    Article  Google Scholar 

  23. Niendorf T, Krooß P, Batyrsina E, Paulsen A, Frenzel J, Eggeler G, Maier HJ (2014) On the functional degradation of binary titanium-tantalum high-temperature shape memory alloys: a new concept for fatigue life extension. Funct Mater Lett 7(4):1450042

    Article  Google Scholar 

  24. Motemani Y, Buenconsejo PJS, Craciunescu C, Ludwig A (2014) High-temperature shape memory effect in Ti–Ta thin films sputter deposited at room temperature. Adv Mater Interfaces 1(3):1400019

    Article  Google Scholar 

  25. Rynko R, Marquardt A, Paulsen A, Frenzel J, Somsen C, Eggeler G (2015) Microstructural evolution in a Ti–Ta high-temperature shape memory alloy during creep. Int J Mat Res 106(4):331–341

    Article  Google Scholar 

  26. Niendorf T, Krooß P, Batyrsina E, Paulsen A, Motemani Y, Buenconsejo PJS, Frenzel J, Eggeler G, Maier HJ (2015) Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT SMAs). Mater Sci Eng A 620:359–366

    Article  Google Scholar 

  27. Niendorf T, Krooß P, Somsen C, Rynko R, Paulsen A, Batyrsina E, Frenzel J, Eggeler G, Maier HJ (2015) Cyclic degradation of titanium-tantalum high-temperature shape memory alloys: the role of dislocation activity and chemical decomposition. Funct Mater Lett. 8(6):1550062

    Article  Google Scholar 

  28. Motemani Y, Kadletz PM, Maier B, Rynko R, Somsen C, Paulsen A, Frenzel J, Schmahl WW, Eggeler G, Ludwig A (2015) Microstructure, shape memory effect and functional stability of Ti67Ta33 thin films. Adv Eng Mater 17(10):1425–1433

    Article  Google Scholar 

  29. Chakraborty T, Rogal J, Drautz R (2015) Martensitic transformation between competing phases in Ti–Ta alloys: a solid-state nudged elastic band study. J Phys Condens Matter 27(11):115401

    Article  Google Scholar 

  30. Chakraborty T, Rogal J, Drautz R (2016) Unraveling the composition dependence of the martensitic transformation temperature: a first-principles study of Ti–Ta alloys. Phys Rev B 94(22):224104

    Article  Google Scholar 

  31. Maier HJ, Karsten E, Paulsen A, Langenkämper D, Decker P, Frenzel J, Somsen C, Ludwig A, Eggeler G, Niendorf T (2017) Microstructural evolution and functional fatigue of a Ti-25Ta high-temperature shape memory alloy. J Mater Res 32(23):1–9

    Article  Google Scholar 

  32. Kadletz PM (2017) Neutron and X-ray diffraction of Ti–Ta and Co49Ni21Ga30 high-temperature shape-memory-alloys, Ph.D. Thesis, Ludwig-Maximilians-Universität, München. Thesis completed March, 2017

  33. Kadletz PM, Motemani Y, Iannotta J, Salomon S, Khare C, Grossmann L, Maier HJ, Ludwig A, Schmahl WW (2018) Crystallographic structure analysis of a Ti–Ta thin film materials library fabricated by combinatorial magnetron sputtering. ACS Comb Sci 20(3):137–150

    Article  Google Scholar 

  34. Ferrari A, Paulsen A, Frenzel J, Rogal J, Eggeler G, Drautz R (2018) Unusual composition dependence of transformation temperatures in Ti–Ta-X shape memory alloys. Phys Rev Mater 2(7):073609

    Article  Google Scholar 

  35. Murray JL (1981) The Ta–Ti (tantalum–titanium) system. Bull Alloy Phase Diagr 2(1):62–66

    Article  Google Scholar 

  36. Krywka C, Paulus M, Sternemann C, Volmer M, Remhof A, Nowak G, Nefedov A, Pöter B, Spiegel M, Tolan M (2006) The new diffractometer for surface X-ray diffraction at beamline BL9 of DELTA. J. Synchrotron Radiat 1(13):8–13

    Article  Google Scholar 

  37. Lutterotti L, Chateigner D, Ferrari S, Ricote J (2004) Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid Films 1(450):34–41

    Article  Google Scholar 

  38. Lutterotti L (2010) Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nuc. Instrum Methods Phys Res Sect B 3–4(268):334–340

    Article  Google Scholar 

  39. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Article  Google Scholar 

  40. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758

    Article  Google Scholar 

  41. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558

    Article  Google Scholar 

  42. Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mat Sci 6(1):15–50

    Article  Google Scholar 

  43. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169

    Article  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  Google Scholar 

  45. Janssen, J., Surendralal, S., Lysogorskiy, Y., Todorova, M., Hickel, T., Drautz, R., and Neugebauer, J.: pyiron: an integrated development environment for computational materials science, article in production

  46. Methfessel MPAT, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40(6):3616

    Article  Google Scholar 

  47. Baldereschi A (1973) Mean-value point in the Brillouin zone. Phys Rev B 7(12):5212–5215

    Article  Google Scholar 

  48. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188

    Article  Google Scholar 

  49. Ferrari A, Sangiovanni D, Rogal J, Drautz R First principles characterization of reversible martensitic transformations arXiv:1810.05489

  50. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci USA 30(9):244–247

    Article  Google Scholar 

  51. Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71(11):809–824

    Article  Google Scholar 

  52. Zunger A, Wei SH, Ferreira LG, Bernard JE (1990) Special quasirandom structures. Phys Rev Lett 65(3):353

    Article  Google Scholar 

  53. Wei SH, Ferreira LG, Bernard JE, Zunger A (1990) Electronic properties of random alloys: special quasirandom structures. Phys Rev B 42(15):9622

    Article  Google Scholar 

  54. von Pezold J, Dick A, Friák M, Neugebauer J (2010) Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: application to Al–Ti. Phys. Rev. B 81(9):094203

    Article  Google Scholar 

  55. Koßmann J, Hammerschmidt T, Maisel S, Müller S, Drautz R (2015) Solubility and ordering of Ti, Ta, Mo and W on the Al sublattice in L12-Co3Al. Intermetallics 64:44–50

    Article  Google Scholar 

  56. van de Walle A, Asta M, Ceder G (2002) The alloy theoretic automated toolkit: a user guide. Calphad 26(4):539–553

    Article  Google Scholar 

  57. Moruzzi VL, Janak JF, Schwarz K (1988) Calculated thermal properties of metals. Phys Rev B 37(2):790

    Article  Google Scholar 

  58. Debye P (1912) Zur theorie der spezifischen wärmen (On the theory of specific heats). Ann Phys 344(14):789–839 in German

    Article  Google Scholar 

  59. Paulsen A, Frenzel J, Langenkämper D, Rynko R, Kadletz PM, Schmahl WW, Somsen C, Eggeler G A kinetic study on the evolution of martensitic transformation behavior and microstructures in Ti-Ta high temperature shape memory alloys during aging, in this volume (in German)

Download references

Acknowledgements

This study has been supported by the Deutsche Forschungsgemeinschaft (DFG) within the research unit FOR 1766 (High Temperature Shape Memory Alloys, http://www.for1766.de, project number 200999873), as a collaboration between sub-projects TP1, TP2, and TP3. Part of the calculations have been carried out on the Gamma and Triolith clusters from the Swedish National Infrastructure for Computing (SNIC), and on the Beskow cluster from the Center for High Performance Computing (PDC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ferrari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, A., Kadletz, P.M., Chakraborty, T. et al. Reconciling Experimental and Theoretical Data in the Structural Analysis of Ti–Ta Shape-Memory Alloys. Shap. Mem. Superelasticity 5, 6–15 (2019). https://doi.org/10.1007/s40830-018-00201-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-018-00201-6

Keywords

Navigation