Shape Memory and Superelasticity

, Volume 3, Issue 4, pp 347–360 | Cite as

Grain Nucleation and Growth in Deformed NiTi Shape Memory Alloys: An In Situ TEM Study

  • J. Burow
  • J. FrenzelEmail author
  • C. Somsen
  • E. Prokofiev
  • R. Valiev
  • G. Eggeler


The present study investigates the evolution of nanocrystalline (NC) and ultrafine-grained (UFG) microstructures in plastically deformed NiTi. Two deformed NiTi alloys were subjected to in situ annealing in a transmission electron microscope (TEM) at 400 and 550 °C: an amorphous material state produced by high-pressure torsion (HPT) and a mostly martensitic partly amorphous alloy produced by wire drawing. In situ annealing experiments were performed to characterize the microstructural evolution from the initial nonequilibrium states toward energetically more favorable microstructures. In general, the formation and evolution of nanocrystalline microstructures are governed by the nucleation of new grains and their subsequent growth. Austenite nuclei which form in HPT and wire-drawn microstructures have sizes close to 10 nm. Grain coarsening occurs in a sporadic, nonuniform manner and depends on the physical and chemical features of the local environment. The mobility of grain boundaries in NiTi is governed by the local interaction of each grain with its microstructural environment. Nanograin growth in thin TEM foils seems to follow similar kinetic laws to those in bulk microstructures. The present study demonstrates the strength of in situ TEM analysis and also highlights aspects which need to be considered when interpreting the results.


Severe plastic deformation NiTi shape memory alloys (SMAs) Crystallization Recrystallization Grain growth Transmission electron microscopy 



The authors acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) through the research group FOR 544 (project FR 2675/1-2). RV and EP also acknowledge Grant No.14.B25.31.0017 from the Ministry of Education and Science of the Russian Federation.


  1. 1.
    Otsuka K, Waymann CM (1998) Shape memory materials. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Funakubo H (1987) Shape memory alloys. Gordon and Breach, New YorkGoogle Scholar
  3. 3.
    Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, New YorkGoogle Scholar
  4. 4.
    Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678CrossRefGoogle Scholar
  5. 5.
    Rahim M, Frenzel J, Frotscher M, Pfetzing-Micklich J, Steegmüller R, Wohlschlögel M, Mughrabi H, Eggeler G (2013) Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Mater 61(10):3667–3686CrossRefGoogle Scholar
  6. 6.
    Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 378(1–2):24–33CrossRefGoogle Scholar
  7. 7.
    Robertson SW, Pelton AR, Ritchie RO (2012) Mechanical fatigue and fracture of Nitinol. Int Mater Rev 57(1):1–36CrossRefGoogle Scholar
  8. 8.
    Robertson SW, Launey M, Shelley O, Ong I, Vien L, Senthilnathan K, Saffari P, Schlegel S, Pelton AR (2015) A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing. J Mech Behav Biomed 51:119–131CrossRefGoogle Scholar
  9. 9.
    Miyazaki S, Igo Y, Otsuka K (1986) Effect of thermal cycling on the transformation temperatures of Ti-Ni alloys. Acta Metall Mater 34(10):2045–2051CrossRefGoogle Scholar
  10. 10.
    Miyazaki S (1990) Thermal and stress cycling effects and fatigue properties of Ni-Ti alloys. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth-Heinemann, LondonGoogle Scholar
  11. 11.
    Frenzel J, Wieczorek A, Opahle I, Maaß B, Drautz R, Eggeler G (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys. Acta Mater 90:213–231CrossRefGoogle Scholar
  12. 12.
    Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458CrossRefGoogle Scholar
  13. 13.
    Miyazaki S, Otsuka K (1989) Development of shape memory alloys. ISIJ Int 29(5):353–377CrossRefGoogle Scholar
  14. 14.
    Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng A 273–275:134–148CrossRefGoogle Scholar
  15. 15.
    Chau ETF, Friend CM, Allen DM, Hora J, Webster JR (2006) A technical and economic appraisal of shape memory alloys for aerospace applications. Mater Sci Eng A 438–440:589–592CrossRefGoogle Scholar
  16. 16.
    Predki W, Knopik A, Bauer B (2008) Engineering applications of NiTi shape memory alloys. Mater Sci Eng A 481–482:598–601CrossRefGoogle Scholar
  17. 17.
    Grossmann C, Frenzel J, Sampath V, Depka T, Eggeler G (2009) Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metall Mater Trans A 40(11):2530–2544CrossRefGoogle Scholar
  18. 18.
    Duerig T, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 273–275:149–160CrossRefGoogle Scholar
  19. 19.
    Duerig TW (2002) The use of superelasticity in modern medicine. MRS Bull 27(2):101–104CrossRefGoogle Scholar
  20. 20.
    Morgan NB (2004) Medical shape memory alloy applications—the market and its products. Mater Sci Eng A 378(1–2):16–23CrossRefGoogle Scholar
  21. 21.
    Pelton AR, DiCello J, Miyazaki S (2000) Optimisation of processing and properties of medical grade Nitinol wire. Minim Invasive Ther 9(2):107–118CrossRefGoogle Scholar
  22. 22.
    Delville R, Malard B, Pilch J, Sittner P, Schryvers D (2011) Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires. Int J Plast 27(2):282–297CrossRefGoogle Scholar
  23. 23.
    Frenzel J, Burow JA, Payton EJ, Rezanka S, Eggeler G (2011) Improvement of NiTi shape memory actuator performance through ultra-fine grained and nanocrystalline microstructures. Adv Eng Mater 13(4):256–268CrossRefGoogle Scholar
  24. 24.
    Olbricht J, Yawny A, Condo AM, Lovey FC, Eggeler G (2008) The influence of temperature on the evolution of functional properties during pseudoelastic cycling of ultra fine grained NiTi. Mater Sci Eng A 481:142–145CrossRefGoogle Scholar
  25. 25.
    Young ML, Wagner MFX, Frenzel J, Schmahl WW, Eggeler G (2010) Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading. Acta Mater 58(7):2344–2354CrossRefGoogle Scholar
  26. 26.
    Malard B, Pilch J, Sittner P, Delville R, Curfs C (2011) In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires. Acta Mater 59(4):1542–1556CrossRefGoogle Scholar
  27. 27.
    Valiev RZ, Alexandrov IV (1999) Nanostructured materials from severe plastic deformation. Nanostruct Mater 12(1–4):35–40CrossRefGoogle Scholar
  28. 28.
    Langdon TG, Valiev RZ (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51(7):881–981CrossRefGoogle Scholar
  29. 29.
    Kumar KS, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51(19):5743–5774CrossRefGoogle Scholar
  30. 30.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45(2):103–189CrossRefGoogle Scholar
  31. 31.
    Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51(4):427–556CrossRefGoogle Scholar
  32. 32.
    Brailovski V, Prokoshkin S, Inaekyan K, Demers V (2011) Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti-Ni alloys processed by cold rolling and post-deformation annealing. J Alloy Compd 509(5):2066–2075CrossRefGoogle Scholar
  33. 33.
    Valiev R, Gunderov D, Prokofiev E, Pushin V, Zhu Y (2008) Nanostructuring of TiNi alloy by SPD processing for advanced properties. Mater Trans 49(1):97–101CrossRefGoogle Scholar
  34. 34.
    Kockar B, Karaman I, Kim JI, Chumlyakov YJ, Sharp J, Yu CJ (2008) Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy. Acta Mater 56(14):3630–3646CrossRefGoogle Scholar
  35. 35.
    Prokofiev E, Burow J, Frenzel J, Gunderov D, Eggeler G, Valiev R (2011) Phase transformations and functional properties of NiTi alloy with ultrafine-grained structure. In: Wang JT, Figueiredo RB, Langdon TG (eds) Nanomaterials by Severe Plastic Deformation, NanosPD5, Pts. 1 and 2. Trans Tech Publications Ltd, Durnten-ZurichGoogle Scholar
  36. 36.
    Ahadi A, Sun Q (2014) Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Mater 76:186–197CrossRefGoogle Scholar
  37. 37.
    Ahadi A, Sun QP (2013) Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi-effects of grain size. Appl Phys Lett 103(2):021902CrossRefGoogle Scholar
  38. 38.
    Waitz T, Karnthaler HP (2004) Martensitic transformation of NiTi nanocrystals embedded in an amorphous matrix. Acta Mater 52(19):5461–5469CrossRefGoogle Scholar
  39. 39.
    Waitz T, Kazykhanov V, Karnthaler HP (2004) Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater 52(1):137–147CrossRefGoogle Scholar
  40. 40.
    Waitz T, Antretter T, Fischer FD, Karnthaler HP (2008) Size effects on martensitic phase transformations in nanocrystalline NiTi shape memory alloys. Mater Sci Tech 24(8):934–940CrossRefGoogle Scholar
  41. 41.
    Waitz T, Pranger W, Antretter T, Fischer FD, Karnthaler HP (2008) Competing accommodation mechanisms of the martensite in nanocrystalline NiTi shape memory alloys. Mater Sci Eng A 481:479–483CrossRefGoogle Scholar
  42. 42.
    Bhattacharya K (2004) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, OxfordGoogle Scholar
  43. 43.
    Ball JM, James RD (1987) Fine phase mixtures as minimizers of energy. Arch Rat Mech Analys 100(1):13–52CrossRefGoogle Scholar
  44. 44.
    Waitz T (2005) The self-accommodated morphology of martensite in nanocrystalline NiTi shape memory alloys. Acta Mater 53(8):2273–2283CrossRefGoogle Scholar
  45. 45.
    Burow J, Prokofiev E, Somsen C, Frenzel J, Valiev RZ, Eggeler G (2008) Martensitic transformations and functional stability in ultra-fine grained NiTi shape memory alloys. Mater Sci For 584:852–857Google Scholar
  46. 46.
    Prokofiev EA, Burow JA, Payton EJ, Zarnetta R, Frenzel J, Gunderov DV, Valiev RZ, Eggeler G (2010) Suppression of Ni4Ti3 precipitation by grain size refinement in Ni-rich NiTi shape memory alloys. Adv Eng Mater 12(8):747–753CrossRefGoogle Scholar
  47. 47.
    Peterlechner M, Waitz T, Karnthaler HP (2008) Nanocrystallization of NiTi shape memory alloys made amorphous by high-pressure torsion. Scripta Mater 59(5):566–569CrossRefGoogle Scholar
  48. 48.
    Singh R, Divinski SV, Rösner H, Prokofiev EA, Valiev RZ, Wilde G (2011) Microstructure evolution in nanocrystalline NiTi alloy produced by HPT. J Alloy Compd 509(Suppl 1):S290–S293CrossRefGoogle Scholar
  49. 49.
    Delville R, Malard B, Pilch J, Sittner P, Schryvers D (2011) Transmission electron microscopy study of microstructural evolution in nanograined Ni-Ti microwires heat treated by electric pulse. Solid State Phenomen 172:682–687CrossRefGoogle Scholar
  50. 50.
    Kazemi-Choobi K, Khalil-Allafi J, Abbasi-Chianeh V (2012) Investigation of the recovery and recrystallization processes of Ni50.9Ti49.1 shape memory wires using in situ electrical resistance measurement. Mater Sci Eng A 551:122–127CrossRefGoogle Scholar
  51. 51.
    Frenzel J, Zhang Z, Neuking K, Eggeler G (2004) High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles. J Alloy Compd 385(1–2):214–223CrossRefGoogle Scholar
  52. 52.
    Frenzel J, Pfetzing J, Neuking K, Eggeler G (2008) On the influence of thermomechanical treatments on the microstructure and phase transformation behavior of Ni-Ti-Fe shape memory alloys. Mater Sci Eng A 481:635–638CrossRefGoogle Scholar
  53. 53.
    Grossmann C, Frenzel J, Sampath V, Depka T, Oppenkowski A, Somsen C, Neuking K, Theisen W, Eggeler G (2008) Processing and property assessment of NiTi and NiTiCu shape memory actuator springs. Materialwiss Werkst 39(8):499–510CrossRefGoogle Scholar
  54. 54.
    Burow J (2010) Herstellung, Eigenschaften und Mikrostruktur von ultrafeinkörnigen NiTi-Formgedächtnislegierungen. Ruhr-Universität Bochum, BochumGoogle Scholar
  55. 55.
    Kurumlu D, Payton EJ, Somsen C, Dlouhy A, Eggeler G (2012) On the presence of work-hardened zones around fibers in a short-fiber-reinforced Al metal matrix composite. Acta Mater 60(17):6051–6064CrossRefGoogle Scholar
  56. 56.
    Zhang ZH, Frenzel J, Neuking K, Eggeler G (2005) On the reaction between NiTi melts and crucible graphite during vacuum induction melting of NiTi shape memory alloys. Acta Mater 53(14):3971–3985CrossRefGoogle Scholar
  57. 57.
    Birk T, Biswas S, Frenzel J, Eggeler G (2016) Twinning-induced elasticity in NiTi shape memory alloys. Shape Mem Superelasticity 2(2):145–159CrossRefGoogle Scholar
  58. 58.
    Koike J, Parkin DM, Nastasi M (1990) Crystal-to-amorphous transformation of NiTi induced by cold rolling. J Mater Res 5(7):1414–1418CrossRefGoogle Scholar
  59. 59.
    Kudoh Y, Tokonami M, Miyazaki S, Otsuka K (1985) Crystal-structure of the martensite in Ti-49.2at-percent-Ni alloy analyzed by the single crystal x-ray-diffraction method. Acta Metall Mater 33(11):2049–2056CrossRefGoogle Scholar
  60. 60.
    Burke JE, Turnbull D (1952) Recrystallization and grain growth. Progr Met Phys 3:220–292CrossRefGoogle Scholar
  61. 61.
    Huguet-Garcia J, Jankowiak A, Miro S, Meslin E, Serruys Y, Costantini JM (2016) In situ TEM annealing of ion-amorphized Hi Nicalon S and Tyranno SA3 SiC fibers. Nuc Instrum Methods Phys Res Sec B 374:76–81CrossRefGoogle Scholar
  62. 62.
    Zieliński W, Pakieła Z, Kurzydłowski KJ (2003) TEM in situ annealing of severely deformed Ni3Al intermetallic compound. Mater Chem Phys 81(2):452–456CrossRefGoogle Scholar
  63. 63.
    Duarte MJ, Kostka A, Crespo D, Jimenez JA, Dippel AC, Renner FU, Dehm G (2017) Kinetics and crystallization path of a Fe-based metallic glass alloy. Acta Mater 127:341–350CrossRefGoogle Scholar
  64. 64.
    Moberly WJ, Busch JD, Johnson AD, Berkson MH (1992) In situ HVEM of crystallization of amorphous TiNi thin films. MRS Proc 230(85):85–90Google Scholar
  65. 65.
    Ramirez AG, Xu Y, Huang X (2009) Crystallization of amorphous NiTiCu thin films. J Alloy Compd 480(2):L13–L16CrossRefGoogle Scholar
  66. 66.
    Thomas G, Mori H, Fujita H, Sinclair R (1982) Electron-irradiation induced crystalline amorphous transitions in Ni-Ti alloys. Scripta Metall Mater 16(5):589–592CrossRefGoogle Scholar
  67. 67.
    Pelton AR, Sinclair R (1983) Amorphous-crystalline transitions in Ni-Ti alloy. J Metals 35(8):A51Google Scholar
  68. 68.
    Humphrey FJ, Haterley M (2004) Recrystallization and related annealing phenomena. Elsevier, AmsterdamGoogle Scholar
  69. 69.
    Winning M, Gottstein G, Shvindlerman LS (2001) Stress induced grain boundary motion. Acta Mater 49(2):211–219CrossRefGoogle Scholar
  70. 70.
    Legros M, Gianola DS, Hemker KJ (2008) In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater 56(14):3380–3393CrossRefGoogle Scholar
  71. 71.
    Zheng YF, Zhao LC, Ye HQ (2001) HREM studies of twin boundary structure in deformed martensite in the cold-rolled TiNi shape memory alloy. Mater Sci Eng A 297(1–2):185–196CrossRefGoogle Scholar
  72. 72.
    Tadaki T, Wayman CM (1980) Crystal-structure and microstructure of a cold-worked TiNi alloy with unusual elastic behavior. Scripta Metall Mater 14(8):911–914CrossRefGoogle Scholar
  73. 73.
    Lin HC, Wu SK, Chou TS, Kao HP (1991) The effects of cold-rolling on the martensitic-transformation of an equiatomic TiNi alloy. Acta Metall Mater 39(9):2069–2080CrossRefGoogle Scholar
  74. 74.
    Madangopal K, Banerjee R (1992) The lattice invariant shear in Ni-Ti shape memory alloy martensites. Scripta Metall Mater 27(11):1627–1632CrossRefGoogle Scholar
  75. 75.
    Jiang S, Hu L, Zhang Y, Liang Y (2013) Nanocrystallization and amorphization of NiTi shape memory alloy under severe plastic deformation based on local canning compression. J Non-Cryst Solids 367:23–29CrossRefGoogle Scholar
  76. 76.
    Tadayyon G, Guo Y, Mazinani M, Zebarjad SM, Tiernan P, Tofail SAM, Biggs MJP (2017) Effect of different stages of deformation on the microstructure evolution of Ti-rich NiTi shape memory alloy. Mater Charact 125:51–66CrossRefGoogle Scholar
  77. 77.
    Gottstein G, Molodov DA, Shvindlerman LS (1998) Grain boundary migration in metals: recent developments. Interface Sci 6(1–2):7–22CrossRefGoogle Scholar
  78. 78.
    Rohrer GS (2005) Influence of interface anisotropy on grain growth and coarsening. Annu Rev Mater Res 35:99–126CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • J. Burow
    • 1
  • J. Frenzel
    • 1
    Email author
  • C. Somsen
    • 1
  • E. Prokofiev
    • 2
  • R. Valiev
    • 2
    • 3
  • G. Eggeler
    • 1
  1. 1.Institute for Materials, Ruhr University BochumBochumGermany
  2. 2.Saint Petersburg State UniversitySt. PetersburgRussia
  3. 3.Institute of Physics of Advanced MaterialsUfa State Aviation Technical UniversityUfaRussia

Personalised recommendations