Skip to main content
Log in

Julius Robert Mayer and the principle of energy conservation

ChemTexts Aims and scope Submit manuscript

Cite this article

Abstract

Julius Robert von Mayer was among the first to state the principle of energy conservation. As a medical doctor, he was interested in the relationship between heat and work, being stimulated by observations and considerations regarding the physiology of the human body. In 1842, he published a first manuscript in which he reported the value of the mechanical equivalent of heat; then, in a paper in 1845, he elucidated the procedure followed for the calculation of the equivalent. The result achieved by Mayer, based only on theoretical calculations, was presented before the experimentally determined value obtained by Joule in 1847 and remains of capital interest in the history of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

(Photograph taken in 1880—Stadtarchiv Heilbronn). Reproduced by kind permission of Stadtarchiv Heilbronn, gouache by Wilhelm Jahn

Fig. 3

References

  1. Kuhn TS (1977) Energy conservation as an example of simultaneous discovery. In: Kuhn TS (ed) The essential tension. University of Chicago Press, Chicago, pp 66–104

    Chapter  Google Scholar 

  2. Kuhn TS (1977) Energy conservation as an example of simultaneous discovery. In: Kuhn TS (ed) The essential tension. University of Chicago Press, Chicago, p 68

    Chapter  Google Scholar 

  3. Bowler PJ, Morus IR (2005) Making modern science. University of Chicago Press, Chicago, pp 81–85

    Book  Google Scholar 

  4. Müller I (2007) A history of thermodynamics. Springer, Berlin, pp 13–21

    Google Scholar 

  5. Mayer JR (1842) Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie 42:233–240 (English translation of this paper can be found in [6]; another translation appeared in 1862 by G. C. Foster [7])

    Article  Google Scholar 

  6. Lindsay RB (1973) Julius Robert Mayer: prophet of energy. Pergamon Press, Oxford, pp 67–74

    Google Scholar 

  7. Foster GC (1862) Remarks on the forces of inorganic nature. Philos Mag 24:371–377

    Article  Google Scholar 

  8. Rankine WJM (1853) On the general law of the transformation of energy. Philos Mag 4:106–117

    Article  Google Scholar 

  9. Hutchison K (1981) W.J.M. Rankine and the rise of thermodynamics. Br J Hist Sci 14:1–26

    Article  Google Scholar 

  10. Buck P (1979) Robert Mayer—Die universelle Anwendung des Prinzips vom mechanischen Äquivalent der Wärme, Reprinta historica didactica, Franzbecker—Didaktischer Dienst, Hildesheim, pp 1–30

  11. Buck P (1979) Robert Mayer—Dokumente zur Begriffsbildung des mechanischen Äquivalent der Wärme, Reprinta historica didactica, Franzbecker—Didaktischer Dienst, Hildesheim, pp 45–71

  12. Culotta CA (1972) Respiration and the Lavoisier tradition: theory and modification 1777–1850. Trans Am Philos Soc 62:3–41

    Article  Google Scholar 

  13. Mrs Lavoisier & de Laplace (1780) Memoire sur la chaleur. Histoire de Acadèmie Royale des Sciences 355–408

  14. Mayer JR (1845) Die Organische Bewegung in ihrem Zusammenhang mit dem Stoffwechsel. In: Die Mechanik der Wärme in gesammelten Schriften, Verlag der J. G. Cotta'schen, Buchhandlung, Stuttgart, pp 13–126 (English translation of this paper can be found in [6])

  15. Joule J (1847) Expériences sur l’identité entre le calorique et la force mécanique. Comptes rendus 25:309–311

    Google Scholar 

  16. Mayer JR (1848) Beitrage zur Dynamik des Himmels, in popularer Darstellung, Stadtarzt in Heilbronn, Heilbronn. Translated by Dr. H. Debus, F.R.S., Phil. Mag. S. 4. Vol. 25. No.168. April 1863

  17. Caneva K (1993) Robert Mayer and the conservation of energy. Princeton University Press, Princeton, pp 3–6

    Google Scholar 

  18. Zöllner F (1881) Wissenschaftliche Abhandlungen, Bd. 4, Leipzig. The facsimile images fall between printed pages 688 and 689

  19. Moore CE, von Smolinski A, Claus A, Graham DJ, Jaselskis B (2014) On the first law of thermodynamics and the contribution of Julius Robert Mayer: new translation and consideration of a rejected manuscript. Bull Hist Chem 39:122–130

    CAS  Google Scholar 

  20. Joule J (1843) On the caloric effects of magneto-electricity, and on the mechanical value of heat. Philos Mag 23:263–276 (347–355; 435–443)

    Google Scholar 

  21. Joule J (1845) On the existence of an equivalent relation between heat and the ordinary forms of mechanical powers. Philos Mag 27:205–207

    Google Scholar 

  22. Joule J (1847) On the mechanical equivalent of heat, as determined by the heat evolved by the friction of fluids. Philos Mag 31:173–176

    Google Scholar 

  23. Joule J (1849) Sur l’équivalent mécanique du calorique. Comptes rendus 28:132–135

    Google Scholar 

  24. Tyndall J (1869) Heat considered as a mode of motion. Appleton & Company, New York

    Google Scholar 

  25. Mayer JR (1842) Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie 42:233

    Article  Google Scholar 

  26. Mayer JR (1842) Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie 42:233–234

    Article  Google Scholar 

  27. Mayer JR (1842) Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie 42:235

    Article  Google Scholar 

  28. Mayer JR (1842) Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie 42:236

    Article  Google Scholar 

  29. Mayer JR (1842) Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemxxie und Pharmacie 42:238

    Google Scholar 

  30. Mayer JR (1842) Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie 42:238–239

    Article  Google Scholar 

  31. Mayer JR (1842) Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie 42:239

    Article  Google Scholar 

  32. In the 1845 paper, at pag. 24 [14], Mayer takes up the subject of the link between movement and heat and seems to want to deal with it only from a phenomenological point of view. Regarding the melting of ice, he writes: “When a heat transmutation in mechanical effect is established, it refers merely to the fact but the transmutation is not clarified at all. A given quantity of ice can well be transformed into a corresponding one of water; this is a fact independent of unsuccessful questions about how and why and speculation about the ultimate cause of states of aggregation. Science is satisfied with positive acquisitions and willingly leaves poets and natural philosophers to re-propose the eternal enigma of nature with the help of fantasy”

  33. Mayer JR (1842) Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie 42:240

    Article  Google Scholar 

  34. Wisniak J (2008) Conservation of energy: readings on the origins of the first law of thermodynamics part II. Educacion Química 19:216–225

    Article  CAS  Google Scholar 

  35. Mayer JR (1851) Bemerkungen Uber das Mecanische der Wärme. Die Mechanik der Wärme in gesammelten Schriften. Verlag der J. G. Cotta’schen Buchhandlung, Stuttgart, pp 235–294

    Google Scholar 

  36. Joule J (1849) Sur l’équivalent mécanique du calorique. Comptes rendus 28:135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Aquilini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Calculation of the mechanical equivalent of heat

Appendix: Calculation of the mechanical equivalent of heat

Mayer calculates the “mechanical effect” y (that we can trace back to the meaning of work) related to the heating at the constant pressure of 1 cm3 of air from 0 °C to 1 °C. Taking into account a column of mercury, with base 1 cm2 and height 76 cm, the volume of the column is:

$$V_{{{\text{Hg}}}} = {\text{ 1 cm}}^{{\text{2}}}\, {\text{76 cm }} = {\text{ 76 cm}}^{{\text{3}}} .$$

Knowing the density of mercury at 0 °C (dHg = 13.60 g cm−3), the weight (indeed, the mass) of the column, WHg, is:

$$W_{{{\text{Hg}}}} = V_{{{\text{Hg}}}} {\text{d}}_{{{\text{Hg}}}} = {\text{ 76 cm}}^{{\text{3}}} {\text{13}}.{\text{6}}0{\text{ g cm}}^{{ - {\text{3}}}} = {\text{ 1}}0{\text{33 g}}.$$

The volume variation (ΔV) associated to the expansion of 1 cm3 of air heated from 0 °C to 1 °C at the constant pressure of 76 cm of Hg is: ΔV = (1/274) cm3. Thus, considering the base section of the column equal to 1 cm2, the raising of mercury in the column is: h = 1/274 cm = 0.00365 cm. Consequently, the mechanical effect y due to the air expansion results:

$$y = Wh = {\text{ 1}}0{\text{33 g }}\left( {{\text{1}}/{\text{274}}} \right){\text{ cm }} = {\text{ 1}}0{\text{33 g }}0.00{\text{365}}\;{\text{cm }} = 3.770{\text{ g cm}}.$$

Then, Mayer calculates the heat associated to the heating of 1 cm3 of air from 0 °C to 1 °C at constant pressure. The specific heat of air warming at constant pressure (CP = 0.267 cal g−1 °C−1) was known; moreover, also known was the value of the ratio between CP and CV, the specific heat of air warming at constant volume:

$$C_{{\text{P}}} /C_{{\text{V}}} = {\text{ 1}}.{\text{421}}.$$

From these values results:

$$C_{{\text{V}}} = 0.188{\text{ cal g}}^{{ - 1}} \;^\circ {\text{C}}^{{ - 1}} .$$

The weight (indeed, the mass) of 1 cm3 of air at 0 °C and at the pressure of 76 cm of Hg can be calculated, knowing the air density at 0 °C. It results as: Wair = 0.0013 g. The heat adsorbed at constant pressure, QP, for increasing the temperature by 1 °C is:

$$Q_{{\text{P}}} = W_{{{\text{air}}}} C_{{\text{P}}} \Delta T = 0.0013{\text{ g}}~\;0.267{\text{ cal g}}^{{ - 1}} \;^{ \circ } {\text{C}}^{{ - 1}} 1\;^{ \circ } {\text{C}} = 0.000347{\text{ cal}}.$$

whereas the heat adsorbed at constant volume, QV, is:

$$Q_{{\text{V}}} = W_{{{\text{air}}}} C_{{\text{V}}} \Delta T = 0.0013{\text{ g }}0.188{\text{ cal g}}^{{ - 1}} \;^{ \circ } {\text{C}}^{{ - 1}} 1\;^{ \circ } {\text{C }} = 0.000244\;{\text{cal}}.$$

The difference:

$$Q_{{\text{P}}} {-}Q_{{\text{V}}} = 0.000{\text{347 }}-0.000{\text{244 }} = 0.00010{\text{3 cal}}.$$

corresponds to the ability of the system to lift a weight of 1033 g by 1/274 cm and is related to the previously determined mechanical effect y.

From these values, Mayer can now calculate the proportionality constant k, i.e. the mechanical equivalent of the heat, from the ratio:

$$k = y/\left( {Q_{{\text{P}}} {-}Q_{{\text{V}}} } \right) = \left( {{\text{3}}.{\text{77}}0{\text{ g cm}}/0.000{\text{1}}0{\text{3 cal}}} \right) = {\text{36,7}}00{\text{ g cm cal}}^{{ - {\text{1}}}} = {\text{ 367}}\;{\text{g m cal}}^{{ - 1}} .$$

Finally, taking into account the transformation of the mass in weight and converting the result to the International System of Units, we obtain:

$$k = \left( {{\text{367 g m cal}}^{{ - {\text{1}}}} {\text{9}}.{\text{8 m s}}^{{ - {\text{2}}}} } \right)/\left( {{\text{1}}000{\text{ g kg}}^{{ - {\text{1}}}} } \right) = {\text{3}}.{\text{6}}0{\text{ kg m}}^{{\text{2}}} {\text{s}}^{{ - {\text{2}}}}/{\text{cal }} = 3.60{\text{ J/cal}}.$$

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aquilini, E., Cosentino, U., Pasqualetti, N. et al. Julius Robert Mayer and the principle of energy conservation. ChemTexts 7, 22 (2021). https://doi.org/10.1007/s40828-021-00147-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-021-00147-w

Keywords

Navigation