, 4:20 | Cite as

Vanadium in health issues

  • Dieter RehderEmail author
Lecture Text


Vanadium (20th in natural abundance) is omnipresent in the environment both naturally and in problematic or toxic concentrations, as pollutant. Ingested, e.g. with drinking water and food, or by inhalation in the form of oxides attached to dust particle, vanadium can cause health hazards. Since vanadate is a phosphate antagonist, vanadium—in appropriate low concentrations—is also expected to exert a variety of physiological actions, some of which have been documented in pre-medicinal or—in the case of diabetes type 2—in phase IIa clinical tests. Other potential implementations, elucidated and scrutinized in this report, include myocardial infarctions, viral, bacterial and parasitic infections (the latter essentially in tropical countries), and cancer.


Vanadium Distribution Physiology Medicinal potential 


  1. 1.
    Carpentier W, Sandra K, De Smet I, Brige A, De Smet L, Van Beeumen J (2003) Appl Environ Microbiol 69:3636–3639CrossRefGoogle Scholar
  2. 2.
    Hu J, Xia W, Pan X, Zheng T, Zhang B, Zhou A et al (2017) Lancet Planet Health 1:230–241CrossRefGoogle Scholar
  3. 3.
    Levina A, Lay PA (2017) Chem Asian J 12:1692–1699CrossRefGoogle Scholar
  4. 4.
    Rehder D (2015) Metallomics 7:730–742CrossRefGoogle Scholar
  5. 5.
    Rehder D (2016) Future Med Chem 8:325–338CrossRefGoogle Scholar
  6. 6.
    Costa-Pessoa J, Etcheverry S, Gambino D (2015) Coord Chem Rev 301–302:24–48CrossRefGoogle Scholar
  7. 7.
    Costa-Pessoa J, Garribba E, Santos MFA, Santos-Silva T (2015) Coord Chem Rev 301–302:49–86CrossRefGoogle Scholar
  8. 8.
    Thomson KH. Lichter J, LeBel C, Scaife MC, Orvig O (2009) J Inorg Biochem 103:554–558CrossRefGoogle Scholar
  9. 9.
    Niu X, Xiao R, Wang N, Wang Z, Zhang Y, Quia Q, Yang X (2016) Curr Top Med Chem 16:811–822CrossRefGoogle Scholar
  10. 10.
    Sanna D, Sera M, Micera G, Garribba E (2015) Inorg Chem 54:7753–7766CrossRefGoogle Scholar
  11. 11.
    Sanna D, Sera M, Micera G, Garribba E (2014) Inorg Chim Acta 420:75–84CrossRefGoogle Scholar
  12. 12.
    Rees JA, Bjornsson R, Schlesier J, Sippel D, Einsle O, DeBeer S (2015) Angew Chem Int Ed 54:13249–13252CrossRefGoogle Scholar
  13. 13.
    Sippel D, Einsle O (2017) Nat Chem Biol 13:956–960CrossRefGoogle Scholar
  14. 14.
    Lee CC, Fay AW, Weng T-C, Krest CM, Hedmann B, Hodgson KO, Hu Y, Ribbe MW (2015) Proc Nat Acad Sci 112:13845–13849CrossRefGoogle Scholar
  15. 15.
    Wever R, van der Horst MA (2013) Dalton Trans 42:11778–11786CrossRefGoogle Scholar
  16. 16.
    Rehder D (2015) Metallomics 7:30–742CrossRefGoogle Scholar
  17. 17.
    Xu X, Xia S, Zhou L, Zhang Z, Rittmann BE (2015) J Environ Sci 30:122–128CrossRefGoogle Scholar
  18. 18.
    Ścibior A (2016) Chem Biol Interact 258:214–233CrossRefGoogle Scholar
  19. 19.
    Irving E, Stoker AW (2017) Molecules 22:2269CrossRefGoogle Scholar
  20. 20.
    Lindquist Y, Schneider G, Vihko P (1994) Eur J Biochem 221:139–142CrossRefGoogle Scholar
  21. 21.
    Brandão TAS, Hengge AC, Johnson SJ (2010) J Biol Chem 285:15874–15883CrossRefGoogle Scholar
  22. 22.
    Smith DM, Pickering RM, Lewis GT (2008) Q J Med 1012:351–358CrossRefGoogle Scholar
  23. 23.
    Hiromura M, Sakurai H (2008) Metallomics 5:1615–1621Google Scholar
  24. 24.
    He RJ, Yu ZH, Zhang RY (2014) Acta Pharmacol Sin 35:1227–1246CrossRefGoogle Scholar
  25. 25.
    Köpf-Maier P, Köpf H (1986) Drugs Future 11:297–319CrossRefGoogle Scholar
  26. 26.
    Fichtner I, Claffey J, Deally A, Gleeson B, Hogan M, Markelova RM, Müller-Bunz H, Weber H, Tacke M (2010) J Organomet Chem 695:1175–1181CrossRefGoogle Scholar
  27. 27.
    Liao X, Lu J, Ying P, Zhao P, Bai Y, Li W, Liu M (2013) J Biol Inorg Chem 18:975–984CrossRefGoogle Scholar
  28. 28.
    Sanna D, Ugone V, Micera M, Buglyó P, Biró L, Garribba E (2017) Dalton Trans 46:8950–8967CrossRefGoogle Scholar
  29. 29.
    Lavina A, Lay PA (2017) Chem Asian J 12:1692–1699CrossRefGoogle Scholar
  30. 30.
    Naso LG, Ferrer EG, Butenko N, Cavaco I, Lezama L, Rojo T, Etcheverry SB, Williams PAM (2014) (2011) J Biol Inorg Chem 16:653–668CrossRefGoogle Scholar
  31. 31.
    Evangelou AM (2002) Crit Rev Oncol Hematol 42:249–265CrossRefGoogle Scholar
  32. 32.
    Barford D (2004) Curr Opin Struct Biol 14:679–686CrossRefGoogle Scholar
  33. 33.
    Maurya MR, Haldar C, Khan AA, Azam A, Saluhuddin A, Kumar A, Costa Pessoa J (2012) Eur J Inorg Chem 2012:2560–2577CrossRefGoogle Scholar
  34. 34.
    Benítez J, Guggeri L, Tomaz I, Arrambide G, Navarro M, Costa Pessoa J, Garat B, Gambino D (2009) J Inorg Biochem 103:609–616CrossRefGoogle Scholar
  35. 35.
    Fernández M, Becco L, Correia I, Benítez J, Piro OE, Echeverria OE,GA, Medeiros GA, Comini A, Lavaggi M, Gonzáles ML, Cerecetto M, Moreno H, Costa Pessoa V, Garat J, Gambino B D (2013) J Inorg Biochem 127:150–160CrossRefGoogle Scholar
  36. 36.
    Adriazola IO, do Amaral AE, Amorim JC, Correia BL, Petkowicz CLO, Ramalho Mercê AL, Noleto GR (2014) J Inorg Biochem 132:45–51CrossRefGoogle Scholar
  37. 37.
    Correia I, Adão P, Roy S, Wahba M, Matos C, Maurya MR, Marques F, Pavan FR, Leite CQF, Avecilla F, Coata Pessoa J (2014) J Inorg Biochem 141:83–93CrossRefGoogle Scholar
  38. 38.
    Rosset A, Soares DC, Covelli D, Pannecouque C, Budd L, Collins A, Robertson N, Parsons S, De Clerq E, Kannepohl O, Sadlet PJ (2010) Inorg Chem 49:1122–1132CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Chemistry DepartmentUniversity of HamburgHamburgGermany

Personalised recommendations