Advertisement

ChemTexts

, 3:13 | Cite as

Discovery, properties and applications of molybdenum and its compounds

  • Hans-Joachim LunkEmail author
  • Hans Hartl
Lecture Text

Abstract

The basic properties of molybdenum and subsequently the methods of producing metallic molybdenum are described. Selected classes of important inorganic compounds (molybdenum halides, molybdenum oxides, iso- and hetero-polyoxomolybdates) as well as molybdenum hexacarbonyl and hybrid inorganic–organic materials are presented. Thereafter the focus is directed to various applications of metallic molybdenum, its alloys and compounds such as catalysts, lubricants and refractory ceramics. In conclusion, molybdenum’s medicinal role and the antimicrobial activity of MoO3 and solid solutions Mo n W1-n O3 are discussed.

Keywords

Molybdenum Discovery Inorganic molybdenum compounds Properties Applications Medicinal role 

References

  1. 1.
  2. 2.
    Pyykkö P, Atsumi M (2009) Chem Eur J 15:186–197CrossRefGoogle Scholar
  3. 3.
    Pyykkö P, Atsumi M (2009) Chem Eur J 15:12770–12779CrossRefGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
    Richards RL (1994) The halides of molybdenum. In: Braithwaite ER, Haber J (eds) Molybdenum: an outline of its chemistry and use. Elsevier, Amsterdam, pp 251–276CrossRefGoogle Scholar
  7. 7.
    Vaknin D, David D, Selig H, Yeshurun Y (1985) J Chem Phys 83:3859–3862CrossRefGoogle Scholar
  8. 8.
    Nalewajek D, Beckman K (2014) U.S. Patent Application 20140140905 A1Google Scholar
  9. 9.
    Müller U (1981) Angew Chem Int Ed EngI 20:692–693CrossRefGoogle Scholar
  10. 10.
    Swanson WW (1988) GrantApplication numberUS 07/039,865 Publication date Aug 9, 1988 Filingdate Apr 20, 1987 Priority date Apr 20, 1987Google Scholar
  11. 11.
    Kihlborg L (1963) Arkiv Kemi 21:357–364Google Scholar
  12. 12.
    McCarron EM (1986) J Chem Soc. Chem Commun 1986:336–338CrossRefGoogle Scholar
  13. 13.
    Parise JB, McCarron EM III, Von Dreele R, Goldstone JA (1991) J Solid State Chem 93:193–201CrossRefGoogle Scholar
  14. 14.
    Sayede AD, Amriou T, Pernisek M, Khelifa B, Mathieu C (2005) Chem Phys 316:72–82CrossRefGoogle Scholar
  15. 15.
    Parise JB, McCarron EM III, Sleight AW (1987) Mater Res Bull 22:803–811CrossRefGoogle Scholar
  16. 16.
    McCarron EM III, Calabrese JC (1991) J Solid State Chem 91:121–125CrossRefGoogle Scholar
  17. 17.
    Lunk HJ, Hartl H, Hartl MA, Fait MJG, Shenderovich IG, Feist M, Frisk TA, Daemen LL, Mauder D, Eckelt R, Gurinov AA (2010) Inorg Chem 49:9400–9408CrossRefGoogle Scholar
  18. 18.
    Guo J, Zavalij P, Whittingham MS (1994) Eur J Solid State Inorg Chem 31:833–842Google Scholar
  19. 19.
    McCarroll WH (1994) Oxides: solid state chemistry. In: King RB (ed) Encyclopedia of inorganic chemistry. Wiley, HobokenGoogle Scholar
  20. 20.
    Greenblatt M (1988) Chem Rev 88:31–53CrossRefGoogle Scholar
  21. 21.
    Canadell E, Whangbo MH (1988) Inorg Chem 27:228–232CrossRefGoogle Scholar
  22. 22.
    Magnéli A (1948) Acta Chem Scand 2:861–871CrossRefGoogle Scholar
  23. 23.
    Schlenker C, Dumas J, Escribe-Filippini C, Guyot H, Marcus J, Fourcaudot C (1985) Philos Mag B 52:643–667CrossRefGoogle Scholar
  24. 24.
    Sato M, Fujishita H, Sato S, Hoshino S (1986) J Phys C 19:3059–3067CrossRefGoogle Scholar
  25. 25.
    Ganne M, Boumaza A, Dion M, Dumas J (1985) J Mater Res Bull 20:1297–1308CrossRefGoogle Scholar
  26. 26.
    Whangbo MH, Canadell E (1988) J Am Chem Soc 110:358–363CrossRefGoogle Scholar
  27. 27.
    Collins BT, Greenblatt M, McCarroll WH, Hull GW (1988) J Solid State Chem 73:507–513CrossRefGoogle Scholar
  28. 28.
    Wadsley AD (1967) In: Mandelcorn L (ed) Non-Stoichiometric Compounds. Academic Press, New YorkGoogle Scholar
  29. 29.
    Canadell E, Whangbo MH (1991) Chem Rev 91:965–1034CrossRefGoogle Scholar
  30. 30.
    Thiele A, Fuchs J (1979) Z Naturforsch 34b:145–154Google Scholar
  31. 31.
    Cruywagen JJ (2000) Advances Inorg Chem 49:127–182CrossRefGoogle Scholar
  32. 32.
    Gatehouse BM, Leverett P (1969) J Chem Soc (A) pp 849–854Google Scholar
  33. 33.
    Dittmann M, Schweda E (1998) Z Anorg Allg Chem 624:2033–2037CrossRefGoogle Scholar
  34. 34.
    Schweda E, Dittmann M, Hofmann M, Glaser M (2002) Z Krist 217:164–167Google Scholar
  35. 35.
    Knöpnadel I, Hartl H, Hunnius WD, Fuchs J (1974) Angew Chem 86:894–895CrossRefGoogle Scholar
  36. 36.
    Evans Jr. HT, Gatehouse BM, Leverett P (1975) J Chem Soc, Dalton Trans, pp. 505–514Google Scholar
  37. 37.
    Garin JL, Costamagna JA (1988) Acta Cryst C44:779–782Google Scholar
  38. 38.
    Lasocha W, Jansen J, Schenk H (1995) J Solid State Chem 116:422–426CrossRefGoogle Scholar
  39. 39.
    Vivier H, Bernard J, Djomaa H (1977) Rev Chim Miner 14:584–604Google Scholar
  40. 40.
    Benchrifa R, Leblanc M, DePape R (1989) Eur J Solid State Inorg Chem 26:593–601Google Scholar
  41. 41.
    http://www.7cours/HM_Chap0_HybridOrganicInorganicMaterials.pdfGoogle Scholar
  42. 42.
    Banerjee A, Raad FS, Vankova N, Bassil BS, Heine T, Kortz U (2011) Inorg Chem 50:11667–11675CrossRefGoogle Scholar
  43. 43.
    Krebs B, Stiller S, Tytko KH, Mehmke J (1991) Eur J Solid State Inorg Chem 28:883–903Google Scholar
  44. 44.
    Müller A, Krickemeyer E, Meyer J, Bögge H, Peters F, Plass W, Diemann E, Dillinger S, Nonnenbruch F, Randerath M, Menke C (1995) Angew Chem 107:2293–2295CrossRefGoogle Scholar
  45. 45.
    Müller A, Botar B, Das SK, Bögge H, Schmidtmann M, Merca A (2004) Polyhedron 23:2381–2385CrossRefGoogle Scholar
  46. 46.
    Berzelius JJ (1826) Ann Phys 82:369–392CrossRefGoogle Scholar
  47. 47.
    Keggin JF (1933) Nature 131:908–909CrossRefGoogle Scholar
  48. 48.
    Keggin JF (1934) Proc R Soc A 144:75–100CrossRefGoogle Scholar
  49. 49.
    Pope MT (1983) Heteropoly and isopoly oxometalates. Springer, BerlinCrossRefGoogle Scholar
  50. 50.
    Pope MT (1991) Molybdenum oxygen chemistry. Progr Inorg Chem 39:181–257Google Scholar
  51. 51.
    Pope MT, Müller A (eds) (1994) Polyoxometalates: from platonic solids to anti-retroviral activity. Kluwer Academic Publishers, New YorkGoogle Scholar
  52. 52.
    Baker LCW, Glick DC (1998) Chem Rev 98:3–49CrossRefGoogle Scholar
  53. 53.
    Mizuno N, Misono M (1998) Chem Rev 98:199–217CrossRefGoogle Scholar
  54. 54.
    Sadakane M, Steckhan E (1998) Chem Rev 98:219–237CrossRefGoogle Scholar
  55. 55.
    Müller A, Peters F, Pope MT, Gatteschi D (1998) Chem Rev 98:239–271CrossRefGoogle Scholar
  56. 56.
    Klemperer WG, Wall CG (1998) Chem Rev 98:297–306CrossRefGoogle Scholar
  57. 57.
    Rhule JT, Hill CL, Judd DA, Schinazi RF (1998) Chem Rev 98:327–357CrossRefGoogle Scholar
  58. 58.
    Rohmer MM, Bénard M, Blaudeau JP, Maestre JM, Poblet JM (1998) Coord Chem Rev 178–180:1019–1049CrossRefGoogle Scholar
  59. 59.
    Kazansky LP, Chaquin P, Fournier M, Hervé G (1998) Polyhedron 17:4353–4364CrossRefGoogle Scholar
  60. 60.
    Yamase T, Pope MT (eds) (2002) Polyoxometalate chemistry for nano-composite design. Kluwer Academic Publishers, New YorkGoogle Scholar
  61. 61.
    Poblet JM, López X, Bo C (2003) Chem Soc Rev 32:297–308CrossRefGoogle Scholar
  62. 62.
    Liu S, Volkmer D, Kuth DG (2003) J Cluster Sci 14:405–419CrossRefGoogle Scholar
  63. 63.
    Brian LE, Baronetti GT, Thomas HJ (2003) Appl Catal A 256:37–50CrossRefGoogle Scholar
  64. 64.
    Hill CL (2004) Polyoxometalates: reactivity. In: Wedd AG (ed) Comprehensive coordination chemistry II: from biology to nanotechnology, vol 4. Elsevier, Amsterdam, pp 679–750Google Scholar
  65. 65.
    Mizuno N, Yamaguchi K, Kamata K (2005) Coord Chem Rev 249:1944–1956CrossRefGoogle Scholar
  66. 66.
    Gong Y, Hu C, Liang H (2005) Prog Nat Sci 15:385–394CrossRefGoogle Scholar
  67. 67.
    Tajima Y (2005) Mini-Rev Med Chem 5:255–268CrossRefGoogle Scholar
  68. 68.
    Fedotov MA, Maksimovskaya RI (2006) J Struct Chem 47:952–978CrossRefGoogle Scholar
  69. 69.
    Michailovski A, Patzke GR (2006) Chem Eur J 12:9122–9134CrossRefGoogle Scholar
  70. 70.
    He T, Yao J (2006) Prog Mater Sci 51:810–879CrossRefGoogle Scholar
  71. 71.
    Gouzerh P, Che M (2006) Actual Chim 298:9–22Google Scholar
  72. 72.
    Long DL, Tsunashima R, Cronin L (2010) Angew Chem 122:1780–1803CrossRefGoogle Scholar
  73. 73.
    (2012) Themed collection: polyoxometalate cluster science Chem Soc Rev 41:7325–7646Google Scholar
  74. 74.
    Lunk HJ (2014) In: Steudel R (ed.) Huheey JE, Keiter EA, Keiter RL Anorganische Chemie-Prinzipien von Struktur und Reaktivität, 5th edn. Walter de Gruyter GmbH, Berlin/Boston, 967–984Google Scholar
  75. 75.
    Müller A, Serain C (2000) Acc Chem Res 33:2–10CrossRefGoogle Scholar
  76. 76.
    Nagul EA, McKelvie ID, Worsfold P, Kolev SD (2015) Anal Chim Acta 890:60–82CrossRefGoogle Scholar
  77. 77.
    Dolbecq A, Mellot-Draznieks C, Mialane P, Marrot J, Férey G, Sécheresse F (2005) Eur J Inorg Chem 15:3009–3018CrossRefGoogle Scholar
  78. 78.
    Dawson B (1953) Acta Cryst 6:113–126CrossRefGoogle Scholar
  79. 79.
    Anderson JS (1937) Nature 140:850CrossRefGoogle Scholar
  80. 80.
    Evans HT Jr (1948) J Am Chem Soc 70:1291–1292CrossRefGoogle Scholar
  81. 81.
    Cabello CI, Cabrerizo FM, Alvarez A, Thomas HC (2002), pp. 89–100Google Scholar
  82. 82.
    Weakley TJR (1977) J Less Common Metals 54:289–296CrossRefGoogle Scholar
  83. 83.
    Dexter DD, Silverton JV (1968) J Am Chem Soc 90:3589–3590CrossRefGoogle Scholar
  84. 84.
    Čuvaev VF, Bajdala P, Torčenkova EA, Spicyn VI (1971) Doklady Akademii Nauk (in Russian) 196:1097–1100Google Scholar
  85. 85.
    Spicyn VI, Torčenkova EA, Kazanskij LP, Bajdala P (1974) Z Chem 14:1–8CrossRefGoogle Scholar
  86. 86.
    Lunk HJ (2015) ChemTexts 1:3. doi: 10.1007/s40828-014-0003-8 CrossRefGoogle Scholar
  87. 87.
    Kean S (2011) The disappearing spoon and other true tales of madness, love, and the history of the world from the periodic table of the elements. Back Bay Books, Little, Brown and Company, New York, pp 88–91Google Scholar
  88. 88.
    Klinbumrung A, Thongtem T, Thongtem S (2012) J Nanomat. doi: 10.1155/2012/930763 Google Scholar
  89. 89.
    Song J, Ni X, Gao L, Zheng H (2007) Mat Chem Phys 102:245–248CrossRefGoogle Scholar
  90. 90.
    Vargas-Consuelos CI, Camacho-López M (2014) Superficies y Vacio 27:123–1425Google Scholar
  91. 91.
    Song J, Ni X, Zhang D, Zheng H (2006) Solid State Sci 8:1164–1167CrossRefGoogle Scholar
  92. 92.
    Nørlund Christensen A (1993) J Cryst Growth 129:266–268CrossRefGoogle Scholar
  93. 93.
    Vasudévan AK, Petrovic JJ (1992) Mater Sci Eng, A 155:1–17CrossRefGoogle Scholar
  94. 94.
    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan PM, Yakobson BI, Idrobo JC (2013) Nano Lett 13:2615–2622CrossRefGoogle Scholar
  95. 95.
    Tran TA, Krishnamoorthy K, Song YW, Cho SK, Kim SJ (2014) ACS Appl Mater Interf 6:2980–2986CrossRefGoogle Scholar
  96. 96.
  97. 97.
    Report of the Centers for Disease Control (CDC) Antibiotic Resistance Threats in the USA, 2013 http://www.cdc.gov/drugresistance/threat-report-2013/
  98. 98.
    Cassini A, Plachouras D, Eckmanns T, Abu Sin M, Blank HP, Ducomble T, Haller S, Harder T, Klingeberg A, Sixtensson M, Velasco E, Weiß B, Kramarz P, Monnet DL, Kretzschmar ME, Suetens C (2016) PLoS Med. doi: 10.1371/journal.pmed.1002150 Google Scholar
  99. 99.
  100. 100.
    Second Joint FAO/OIE/WHO Expert Workshop on Non-Human Antimicrobial Usage and Antimicrobial Resistance: Management options, 15–18 March 2004, Oslo/Norway, http://www.oie.int/doc/ged/D895.PDF
  101. 101.
    Hearing: Antiobiotic Resistance and the Use of Antibiotics in Animal Agriculture, Subcommittee on Health, Energy and Commerce Committee, US House of Representatives, July 12, 2010Google Scholar
  102. 102.
    Guidance #209 (2012): The judicious use of medically important antimicrobial drugs in food-producing animals: http://www.fda.gov/downloads/animalveterinary/guidancecomplianceenforcement/guidanceforindustry/ucm216936.pdf
  103. 103.
    Pg. 738 in FDA (2012) New animal drugs; cephalosporin drugs; extralabel animal drug use; order of prohibition. Federal Register, 77(4). http://www.gpo.gov/fdsys/pkg/FR-2012-01-06/pdf/2012-35.pdf
  104. 104.
    Zollfrank C, Gutbrod K, Wechsler P, Guggenbichler JP (2012) Mat Sci Eng C 32:47–54CrossRefGoogle Scholar
  105. 105.
    Lackner M, Maninger S, Guggenbichler JP (2013) Nachr Chem 61:112–115CrossRefGoogle Scholar
  106. 106.
    Guggenbichler JP, Lunk HJ (Anmeldetag 26.04.2013) Verfahren zum Herstellen eines dotierten oder undotierten Mischoxids für einen Verbundwerkstoff und Verbundwerkstoff mit einem solchen Mischoxid Anmeldung Nr./Patent Nr. 14723744.0—1354; Priorität: DE/26.04.13/DEA102013104284; Aktenzeichen 10 2013 104 284.8, IPC Hauptklasse C01G 41/02 Method for producing a doped or undoped mixed oxide for a composite material, and a composite material comprising such a mixed oxide, pending US patent application, publication number: 20160106108, Filed: April 25, 2014; Publication date: April 21, 2016; Applicant: AMISTEC GMBH & CO. KG, Inventors: Hans-Joachim Lunk, Joseph-Peter GuggenbichlerGoogle Scholar
  107. 107.
    Guggenbichler JP, Lackner M (2013) 18th Intern Plansee Seminar (2013). Reutte/Austria, Proceedings RM 11:140–144Google Scholar
  108. 108.
    Lackner M, Lunk HJ, Guggenbichler JP (2013) 18th Intern Plansee Seminar (2013). Reutte/Austria, Proceedings RM 53:515–523Google Scholar
  109. 109.
    Lunk HJ, Guggenbichler JP (2014) Leibniz Online Nr. 16, 1-12 http://www.leibnizsozietaet.de/wp-content/uploads/2014/11/LunkGuggenbichler.pdf
  110. 110.
    Salje A, Gehlig R, Viswanathan K (1978) J Solid State Chem 25:239–250CrossRefGoogle Scholar
  111. 111.
    Cheetham AK (1980) Nature 288:469–470CrossRefGoogle Scholar
  112. 112.
    Morandi S, Paganini MC, Giamello E, Bini M, Capsoni D, Massarotti V, Ghiotti G (2009) J Solid State Chem 182:3342–3352CrossRefGoogle Scholar
  113. 113.
    Hibble SJ, Dickens PG (1985) Mat Res Bull 20:343–349CrossRefGoogle Scholar
  114. 114.
    Ganapathi L, Ramanan A, Gopalakrishnan J (1986) Rao CNR. Chem Commun, J Chem Soc, pp 62–63Google Scholar
  115. 115.
    Figlarz M (1989) Prog Solid State Chem 19:1–46CrossRefGoogle Scholar
  116. 116.
    Garcia PF, McCarron EM (1988) U.S. Patent 4,753,916Google Scholar
  117. 117.
    McCarron III EM, Parise JB (1991) U.S. Patent 5,055,441Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.TowandaUSA
  2. 2.Institute of Chemistry and Biochemistry, Inorganic Chemistry, Freie Universität BerlinBerlinGermany

Personalised recommendations