Skip to main content

Advertisement

Log in

Discovery, properties and applications of molybdenum and its compounds

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

The basic properties of molybdenum and subsequently the methods of producing metallic molybdenum are described. Selected classes of important inorganic compounds (molybdenum halides, molybdenum oxides, iso- and hetero-polyoxomolybdates) as well as molybdenum hexacarbonyl and hybrid inorganic–organic materials are presented. Thereafter the focus is directed to various applications of metallic molybdenum, its alloys and compounds such as catalysts, lubricants and refractory ceramics. In conclusion, molybdenum’s medicinal role and the antimicrobial activity of MoO3 and solid solutions Mo n W1-n O3 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. http://www.periodictable.com/Elements/042/data.html

  2. Pyykkö P, Atsumi M (2009) Chem Eur J 15:186–197

    Article  Google Scholar 

  3. Pyykkö P, Atsumi M (2009) Chem Eur J 15:12770–12779

    Article  Google Scholar 

  4. https://www.plansee.com/en/materials/molybdenum.html

  5. http://www.imoa.info/download_files/molybdenum/Applications_Mo_Metal.pdf

  6. Richards RL (1994) The halides of molybdenum. In: Braithwaite ER, Haber J (eds) Molybdenum: an outline of its chemistry and use. Elsevier, Amsterdam, pp 251–276

    Chapter  Google Scholar 

  7. Vaknin D, David D, Selig H, Yeshurun Y (1985) J Chem Phys 83:3859–3862

    Article  CAS  Google Scholar 

  8. Nalewajek D, Beckman K (2014) U.S. Patent Application 20140140905 A1

  9. Müller U (1981) Angew Chem Int Ed EngI 20:692–693

    Article  Google Scholar 

  10. Swanson WW (1988) GrantApplication numberUS 07/039,865 Publication date Aug 9, 1988 Filingdate Apr 20, 1987 Priority date Apr 20, 1987

  11. Kihlborg L (1963) Arkiv Kemi 21:357–364

    CAS  Google Scholar 

  12. McCarron EM (1986) J Chem Soc. Chem Commun 1986:336–338

    Article  Google Scholar 

  13. Parise JB, McCarron EM III, Von Dreele R, Goldstone JA (1991) J Solid State Chem 93:193–201

    Article  CAS  Google Scholar 

  14. Sayede AD, Amriou T, Pernisek M, Khelifa B, Mathieu C (2005) Chem Phys 316:72–82

    Article  CAS  Google Scholar 

  15. Parise JB, McCarron EM III, Sleight AW (1987) Mater Res Bull 22:803–811

    Article  CAS  Google Scholar 

  16. McCarron EM III, Calabrese JC (1991) J Solid State Chem 91:121–125

    Article  CAS  Google Scholar 

  17. Lunk HJ, Hartl H, Hartl MA, Fait MJG, Shenderovich IG, Feist M, Frisk TA, Daemen LL, Mauder D, Eckelt R, Gurinov AA (2010) Inorg Chem 49:9400–9408

    Article  CAS  Google Scholar 

  18. Guo J, Zavalij P, Whittingham MS (1994) Eur J Solid State Inorg Chem 31:833–842

    CAS  Google Scholar 

  19. McCarroll WH (1994) Oxides: solid state chemistry. In: King RB (ed) Encyclopedia of inorganic chemistry. Wiley, Hoboken

    Google Scholar 

  20. Greenblatt M (1988) Chem Rev 88:31–53

    Article  CAS  Google Scholar 

  21. Canadell E, Whangbo MH (1988) Inorg Chem 27:228–232

    Article  CAS  Google Scholar 

  22. Magnéli A (1948) Acta Chem Scand 2:861–871

    Article  Google Scholar 

  23. Schlenker C, Dumas J, Escribe-Filippini C, Guyot H, Marcus J, Fourcaudot C (1985) Philos Mag B 52:643–667

    Article  CAS  Google Scholar 

  24. Sato M, Fujishita H, Sato S, Hoshino S (1986) J Phys C 19:3059–3067

    Article  CAS  Google Scholar 

  25. Ganne M, Boumaza A, Dion M, Dumas J (1985) J Mater Res Bull 20:1297–1308

    Article  CAS  Google Scholar 

  26. Whangbo MH, Canadell E (1988) J Am Chem Soc 110:358–363

    Article  CAS  Google Scholar 

  27. Collins BT, Greenblatt M, McCarroll WH, Hull GW (1988) J Solid State Chem 73:507–513

    Article  CAS  Google Scholar 

  28. Wadsley AD (1967) In: Mandelcorn L (ed) Non-Stoichiometric Compounds. Academic Press, New York

    Google Scholar 

  29. Canadell E, Whangbo MH (1991) Chem Rev 91:965–1034

    Article  CAS  Google Scholar 

  30. Thiele A, Fuchs J (1979) Z Naturforsch 34b:145–154

    CAS  Google Scholar 

  31. Cruywagen JJ (2000) Advances Inorg Chem 49:127–182

    Article  CAS  Google Scholar 

  32. Gatehouse BM, Leverett P (1969) J Chem Soc (A) pp 849–854

  33. Dittmann M, Schweda E (1998) Z Anorg Allg Chem 624:2033–2037

    Article  CAS  Google Scholar 

  34. Schweda E, Dittmann M, Hofmann M, Glaser M (2002) Z Krist 217:164–167

    CAS  Google Scholar 

  35. Knöpnadel I, Hartl H, Hunnius WD, Fuchs J (1974) Angew Chem 86:894–895

    Article  Google Scholar 

  36. Evans Jr. HT, Gatehouse BM, Leverett P (1975) J Chem Soc, Dalton Trans, pp. 505–514

  37. Garin JL, Costamagna JA (1988) Acta Cryst C44:779–782

    CAS  Google Scholar 

  38. Lasocha W, Jansen J, Schenk H (1995) J Solid State Chem 116:422–426

    Article  CAS  Google Scholar 

  39. Vivier H, Bernard J, Djomaa H (1977) Rev Chim Miner 14:584–604

    CAS  Google Scholar 

  40. Benchrifa R, Leblanc M, DePape R (1989) Eur J Solid State Inorg Chem 26:593–601

    CAS  Google Scholar 

  41. http://www.7cours/HM_Chap0_HybridOrganicInorganicMaterials.pdf

  42. Banerjee A, Raad FS, Vankova N, Bassil BS, Heine T, Kortz U (2011) Inorg Chem 50:11667–11675

    Article  CAS  Google Scholar 

  43. Krebs B, Stiller S, Tytko KH, Mehmke J (1991) Eur J Solid State Inorg Chem 28:883–903

    CAS  Google Scholar 

  44. Müller A, Krickemeyer E, Meyer J, Bögge H, Peters F, Plass W, Diemann E, Dillinger S, Nonnenbruch F, Randerath M, Menke C (1995) Angew Chem 107:2293–2295

    Article  Google Scholar 

  45. Müller A, Botar B, Das SK, Bögge H, Schmidtmann M, Merca A (2004) Polyhedron 23:2381–2385

    Article  Google Scholar 

  46. Berzelius JJ (1826) Ann Phys 82:369–392

    Article  Google Scholar 

  47. Keggin JF (1933) Nature 131:908–909

    Article  CAS  Google Scholar 

  48. Keggin JF (1934) Proc R Soc A 144:75–100

    Article  CAS  Google Scholar 

  49. Pope MT (1983) Heteropoly and isopoly oxometalates. Springer, Berlin

    Book  Google Scholar 

  50. Pope MT (1991) Molybdenum oxygen chemistry. Progr Inorg Chem 39:181–257

    Google Scholar 

  51. Pope MT, Müller A (eds) (1994) Polyoxometalates: from platonic solids to anti-retroviral activity. Kluwer Academic Publishers, New York

    Google Scholar 

  52. Baker LCW, Glick DC (1998) Chem Rev 98:3–49

    Article  CAS  Google Scholar 

  53. Mizuno N, Misono M (1998) Chem Rev 98:199–217

    Article  CAS  Google Scholar 

  54. Sadakane M, Steckhan E (1998) Chem Rev 98:219–237

    Article  CAS  Google Scholar 

  55. Müller A, Peters F, Pope MT, Gatteschi D (1998) Chem Rev 98:239–271

    Article  Google Scholar 

  56. Klemperer WG, Wall CG (1998) Chem Rev 98:297–306

    Article  CAS  Google Scholar 

  57. Rhule JT, Hill CL, Judd DA, Schinazi RF (1998) Chem Rev 98:327–357

    Article  CAS  Google Scholar 

  58. Rohmer MM, Bénard M, Blaudeau JP, Maestre JM, Poblet JM (1998) Coord Chem Rev 178–180:1019–1049

    Article  Google Scholar 

  59. Kazansky LP, Chaquin P, Fournier M, Hervé G (1998) Polyhedron 17:4353–4364

    Article  CAS  Google Scholar 

  60. Yamase T, Pope MT (eds) (2002) Polyoxometalate chemistry for nano-composite design. Kluwer Academic Publishers, New York

    Google Scholar 

  61. Poblet JM, López X, Bo C (2003) Chem Soc Rev 32:297–308

    Article  CAS  Google Scholar 

  62. Liu S, Volkmer D, Kuth DG (2003) J Cluster Sci 14:405–419

    Article  CAS  Google Scholar 

  63. Brian LE, Baronetti GT, Thomas HJ (2003) Appl Catal A 256:37–50

    Article  Google Scholar 

  64. Hill CL (2004) Polyoxometalates: reactivity. In: Wedd AG (ed) Comprehensive coordination chemistry II: from biology to nanotechnology, vol 4. Elsevier, Amsterdam, pp 679–750

    Google Scholar 

  65. Mizuno N, Yamaguchi K, Kamata K (2005) Coord Chem Rev 249:1944–1956

    Article  CAS  Google Scholar 

  66. Gong Y, Hu C, Liang H (2005) Prog Nat Sci 15:385–394

    Article  CAS  Google Scholar 

  67. Tajima Y (2005) Mini-Rev Med Chem 5:255–268

    Article  CAS  Google Scholar 

  68. Fedotov MA, Maksimovskaya RI (2006) J Struct Chem 47:952–978

    Article  CAS  Google Scholar 

  69. Michailovski A, Patzke GR (2006) Chem Eur J 12:9122–9134

    Article  CAS  Google Scholar 

  70. He T, Yao J (2006) Prog Mater Sci 51:810–879

    Article  CAS  Google Scholar 

  71. Gouzerh P, Che M (2006) Actual Chim 298:9–22

    CAS  Google Scholar 

  72. Long DL, Tsunashima R, Cronin L (2010) Angew Chem 122:1780–1803

    Article  Google Scholar 

  73. (2012) Themed collection: polyoxometalate cluster science Chem Soc Rev 41:7325–7646

  74. Lunk HJ (2014) In: Steudel R (ed.) Huheey JE, Keiter EA, Keiter RL Anorganische Chemie-Prinzipien von Struktur und Reaktivität, 5th edn. Walter de Gruyter GmbH, Berlin/Boston, 967–984

  75. Müller A, Serain C (2000) Acc Chem Res 33:2–10

    Article  Google Scholar 

  76. Nagul EA, McKelvie ID, Worsfold P, Kolev SD (2015) Anal Chim Acta 890:60–82

    Article  CAS  Google Scholar 

  77. Dolbecq A, Mellot-Draznieks C, Mialane P, Marrot J, Férey G, Sécheresse F (2005) Eur J Inorg Chem 15:3009–3018

    Article  Google Scholar 

  78. Dawson B (1953) Acta Cryst 6:113–126

    Article  CAS  Google Scholar 

  79. Anderson JS (1937) Nature 140:850

    Article  CAS  Google Scholar 

  80. Evans HT Jr (1948) J Am Chem Soc 70:1291–1292

    Article  CAS  Google Scholar 

  81. Cabello CI, Cabrerizo FM, Alvarez A, Thomas HC (2002), pp. 89–100

  82. Weakley TJR (1977) J Less Common Metals 54:289–296

    Article  CAS  Google Scholar 

  83. Dexter DD, Silverton JV (1968) J Am Chem Soc 90:3589–3590

    Article  CAS  Google Scholar 

  84. Čuvaev VF, Bajdala P, Torčenkova EA, Spicyn VI (1971) Doklady Akademii Nauk (in Russian) 196:1097–1100

    Google Scholar 

  85. Spicyn VI, Torčenkova EA, Kazanskij LP, Bajdala P (1974) Z Chem 14:1–8

    Article  Google Scholar 

  86. Lunk HJ (2015) ChemTexts 1:3. doi:10.1007/s40828-014-0003-8

    Article  Google Scholar 

  87. Kean S (2011) The disappearing spoon and other true tales of madness, love, and the history of the world from the periodic table of the elements. Back Bay Books, Little, Brown and Company, New York, pp 88–91

    Google Scholar 

  88. Klinbumrung A, Thongtem T, Thongtem S (2012) J Nanomat. doi:10.1155/2012/930763

    Google Scholar 

  89. Song J, Ni X, Gao L, Zheng H (2007) Mat Chem Phys 102:245–248

    Article  CAS  Google Scholar 

  90. Vargas-Consuelos CI, Camacho-López M (2014) Superficies y Vacio 27:123–1425

    Google Scholar 

  91. Song J, Ni X, Zhang D, Zheng H (2006) Solid State Sci 8:1164–1167

    Article  CAS  Google Scholar 

  92. Nørlund Christensen A (1993) J Cryst Growth 129:266–268

    Article  Google Scholar 

  93. Vasudévan AK, Petrovic JJ (1992) Mater Sci Eng, A 155:1–17

    Article  Google Scholar 

  94. Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan PM, Yakobson BI, Idrobo JC (2013) Nano Lett 13:2615–2622

    Article  CAS  Google Scholar 

  95. Tran TA, Krishnamoorthy K, Song YW, Cho SK, Kim SJ (2014) ACS Appl Mater Interf 6:2980–2986

    Article  Google Scholar 

  96. www.who.int/mediacentre/factsheets/fs194/en/

  97. Report of the Centers for Disease Control (CDC) Antibiotic Resistance Threats in the USA, 2013 http://www.cdc.gov/drugresistance/threat-report-2013/

  98. Cassini A, Plachouras D, Eckmanns T, Abu Sin M, Blank HP, Ducomble T, Haller S, Harder T, Klingeberg A, Sixtensson M, Velasco E, Weiß B, Kramarz P, Monnet DL, Kretzschmar ME, Suetens C (2016) PLoS Med. doi:10.1371/journal.pmed.1002150

    Google Scholar 

  99. http://consumersunion.org/news/the-overuse-of-antibiotics-in-food-animals-threatens-public-health-2/

  100. Second Joint FAO/OIE/WHO Expert Workshop on Non-Human Antimicrobial Usage and Antimicrobial Resistance: Management options, 15–18 March 2004, Oslo/Norway, http://www.oie.int/doc/ged/D895.PDF

  101. Hearing: Antiobiotic Resistance and the Use of Antibiotics in Animal Agriculture, Subcommittee on Health, Energy and Commerce Committee, US House of Representatives, July 12, 2010

  102. Guidance #209 (2012): The judicious use of medically important antimicrobial drugs in food-producing animals: http://www.fda.gov/downloads/animalveterinary/guidancecomplianceenforcement/guidanceforindustry/ucm216936.pdf

  103. Pg. 738 in FDA (2012) New animal drugs; cephalosporin drugs; extralabel animal drug use; order of prohibition. Federal Register, 77(4). http://www.gpo.gov/fdsys/pkg/FR-2012-01-06/pdf/2012-35.pdf

  104. Zollfrank C, Gutbrod K, Wechsler P, Guggenbichler JP (2012) Mat Sci Eng C 32:47–54

    Article  CAS  Google Scholar 

  105. Lackner M, Maninger S, Guggenbichler JP (2013) Nachr Chem 61:112–115

    Article  CAS  Google Scholar 

  106. Guggenbichler JP, Lunk HJ (Anmeldetag 26.04.2013) Verfahren zum Herstellen eines dotierten oder undotierten Mischoxids für einen Verbundwerkstoff und Verbundwerkstoff mit einem solchen Mischoxid Anmeldung Nr./Patent Nr. 14723744.0—1354; Priorität: DE/26.04.13/DEA102013104284; Aktenzeichen 10 2013 104 284.8, IPC Hauptklasse C01G 41/02 Method for producing a doped or undoped mixed oxide for a composite material, and a composite material comprising such a mixed oxide, pending US patent application, publication number: 20160106108, Filed: April 25, 2014; Publication date: April 21, 2016; Applicant: AMISTEC GMBH & CO. KG, Inventors: Hans-Joachim Lunk, Joseph-Peter Guggenbichler

  107. Guggenbichler JP, Lackner M (2013) 18th Intern Plansee Seminar (2013). Reutte/Austria, Proceedings RM 11:140–144

    Google Scholar 

  108. Lackner M, Lunk HJ, Guggenbichler JP (2013) 18th Intern Plansee Seminar (2013). Reutte/Austria, Proceedings RM 53:515–523

    Google Scholar 

  109. Lunk HJ, Guggenbichler JP (2014) Leibniz Online Nr. 16, 1-12 http://www.leibnizsozietaet.de/wp-content/uploads/2014/11/LunkGuggenbichler.pdf

  110. Salje A, Gehlig R, Viswanathan K (1978) J Solid State Chem 25:239–250

    Article  CAS  Google Scholar 

  111. Cheetham AK (1980) Nature 288:469–470

    Article  CAS  Google Scholar 

  112. Morandi S, Paganini MC, Giamello E, Bini M, Capsoni D, Massarotti V, Ghiotti G (2009) J Solid State Chem 182:3342–3352

    Article  CAS  Google Scholar 

  113. Hibble SJ, Dickens PG (1985) Mat Res Bull 20:343–349

    Article  CAS  Google Scholar 

  114. Ganapathi L, Ramanan A, Gopalakrishnan J (1986) Rao CNR. Chem Commun, J Chem Soc, pp 62–63

    Google Scholar 

  115. Figlarz M (1989) Prog Solid State Chem 19:1–46

    Article  CAS  Google Scholar 

  116. Garcia PF, McCarron EM (1988) U.S. Patent 4,753,916

  117. McCarron III EM, Parise JB (1991) U.S. Patent 5,055,441

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Lunk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunk, HJ., Hartl, H. Discovery, properties and applications of molybdenum and its compounds. ChemTexts 3, 13 (2017). https://doi.org/10.1007/s40828-017-0048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-017-0048-6

Keywords

Navigation