Skip to main content
Log in

Steady-State NOx Emission Model for Gas-Fired Heating and Hot Water Combi-Boilers with Factor Analysis and Artificial Neural Network

  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

In light of partial state of NOx of gas-fired heating and hot water combi-boilers cannot be monitored or the NOx measurement is inaccurate, an online NOx emission model with high accuracy is essential. Seven parameters of NOx have been selected in this study, and an effective NOx emission model based on the factor analysis and radial basis function was developed. The prediction model is also compared to other five artificial neural network and regression methods. Twenty combi-boilers are measured, and the results are utilized for factor analysis and radial basis function model prediction, artificial neural network, and regression prediction. The results indicate that factor analysis and radial basis function model have significantly higher prediction accuracy than artificial neural network and regression models. The proposed factor analysis and radial basis function model may be a preferable solution for the development of accurate NOx emission online monitoring system of gas-fired combi-boilers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tao, Y., Xiang, G., Gao, J., et al.: Emission characteristics of NOx, CO, NH3 and VOCs from gas-fired industrial boilers based on field measurements in Beijing city, China[J]. Atmos. Environ. 184, 1–8 (2018). https://doi.org/10.1016/j.atmosenv.2018.04.022

    Article  Google Scholar 

  2. Zhang, J., Zhang, L.Y., Du, M., et al.: Identifying the major air pollutants base on factor and cluster analysis, a case study in 74 Chinese cities[J]. Atmos. Environ. 144, 37–46 (2016). https://doi.org/10.1016/j.atmosenv.2016.08.066

    Article  Google Scholar 

  3. Xiao, Y., Song, G., Jing, Y., et al.: Emission characteristics of gas-fired boilers in Beijing city, China: category-specific emission factor, emission inventory, and spatial characteristics[J]. Aerosol. Air. Qual. Res. 17(7), 1825–1836 (2017). https://doi.org/10.4209/aaqr.2016.11.0506

    Article  Google Scholar 

  4. Zhou, W., Liu, W., Long, F., et al.: Experimental analysis on influencing factors of NOx emission in gas-fired heating and hot water combi-boilers[J]. J. Therm. Sci. 30(4), 1151–1159 (2021). https://doi.org/10.1007/s11630-020-1330-2

    Article  Google Scholar 

  5. Korpela, T., Kumpulainen, P., Majanne, Y., et al.: Indirect NOx emission monitoring in natural gas fired boilers[J]. Control Eng. Pract. 65, 11–25 (2017). https://doi.org/10.1016/j.conengprac.2017.04.013

    Article  Google Scholar 

  6. Zhou, W., Liu, W., Wang, Y., et al.: Analysis of influencing factors on NOx emission in gas-fired heating and hot water combi-boilers based on orthogonal method[J]. J. Therm. Sci. 30(4), 1088–1095 (2021). https://doi.org/10.1007/s11630-020-1329-8

    Article  Google Scholar 

  7. Lu, Y., Liu, H., Song, B., et al.: Research on hybrid modeling of efficiency and NOx emission[J]. Electr. Power Sci. Eng. 28(5), 37–41 (2012). (in Chinese)

    Google Scholar 

  8. Hao, Z., Zheng, L., Cen, K.: Computational intelligence approach for NOx emissions minimization in a coal-fired utility boiler[J]. Energy Convers. Manag. 51(3), 580–586 (2010). https://doi.org/10.1016/j.enconman.2009.11.002

    Article  Google Scholar 

  9. Zhai, Y., Ding, X., Jin, X., et al.: Adaptive LSSVM based iterative prediction method for NOx concentration prediction in coal-fired power plant considering system delay[J]. Appl. Soft Comput. 89, 106070 (2020). https://doi.org/10.1016/j.asoc.2020.106070

    Article  Google Scholar 

  10. Peng, T., Cheng, Z., Ji, X., et al.: NOx emission model for coal-fired boilers using principal component analysis and support vector regression[J]. J. Chem. Eng. Jpn. 49(2), 211–216 (2016). https://doi.org/10.1252/jcej.15we066

    Article  Google Scholar 

  11. Djebbrii, N., Rouainia, M.: Prediction of industrial pollution by radial basis function networks[J]. Environ. Prot. Eng. 44(3), 153–164 (2018). https://doi.org/10.5277/epe180311

    Article  Google Scholar 

  12. Yang, T., Ma, K., Lv, Y., et al.: Real-time dynamic prediction model of NOx emission of coal-fired boilers under variable load conditions[J]. Fuel 274, 117811 (2020). https://doi.org/10.1016/j.fuel.2020.117811

    Article  Google Scholar 

  13. Hao, Z., Jia, P., Li, G., et al.: Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization[J]. Eng. Appl. Artif. Intell. 25(1), 147–158 (2012). https://doi.org/10.1016/j.engappai.2011.08.005

    Article  Google Scholar 

  14. Ilamathi, P., Selladurai, V., Balamurugan, K., et al.: ANN-GA approach for predictive modeling and optimization of NOx emission in a tangentially fired boiler[J]. Clean Technol. Environ. Policy 15(1), 125–131 (2013). https://doi.org/10.1007/s10098-012-0490-5

    Article  Google Scholar 

  15. Piroddi, G.F.: Estimation of NOx emissions in thermal power plants using neural networks[J]. J. Eng. Gas. Turbines Power 123(2), 465–471 (2001). https://doi.org/10.1115/1.1367339

    Article  Google Scholar 

  16. Chengang, Z., Huaiyuan, et al.: Model for predicting NOx emission from boilers based on MWOA-LSSVM integration[J]. J. Chem. Eng. Jpn. 52(8), 702–709 (2019). https://doi.org/10.1252/jcej.19we004

    Article  Google Scholar 

  17. Fang, W., Sm, A., He, W., et al.: Prediction of NOx emission for coal-fired boilers based on deep belief network[J]. Control Eng. Pract. 80, 26–35 (2018). https://doi.org/10.1016/j.conengprac.2018.08.003

    Article  Google Scholar 

  18. Azzam, M., Awad, M., Zeaiter, J.: Application of evolutionary neural networks and support vector machines to model NOx emissions from gas turbines[J]. J. Environ. Chem. Eng. 6(1), 1044–1052 (2018). https://doi.org/10.1016/j.jece.2018.01.020

    Article  Google Scholar 

  19. Tu, J.V.: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes[J]. J. Clin. Epidemiol. 49(11), 1225–1231 (1996). https://doi.org/10.1016/S0895-4356(96)00002-9

    Article  Google Scholar 

  20. Gumus, E., Kilic, N., Sertbas, A., et al.: Evaluation of face recognition techniques using PCA, wavelets and SVM[J]. Expert Syst. Appl. 37(9), 6404–6408 (2010). https://doi.org/10.1016/j.eswa.2010.02.079

    Article  Google Scholar 

  21. Glassman, I., Yetter, R.A.: Combustion fourth edition[M], pp. 420–422. Academic Press Inc., London (2008)

  22. Kilpinen, P.: Typen oksidien muodostaminen ja hajoaminen. In: Raiko, R., Saastamoinen, J., Hupa, M., Kurki-Suonio, I. (eds.) Poltto Ja Palaminen, 2nd edn., pp. 300–342. International Flame Research Foundation - Suomen kansallinenosasto, Helsinki (2002)

    Google Scholar 

  23. State Administration of market supervision, Standardization administration: GB 25034–2020 Gas-fired heating and hot water combi-boilers[S]. Stand Press China, Beijing (2020)

    Google Scholar 

  24. Jolliffe, I.T., Basilevsky, A.: Statistical factor analysis and related methods: theory and applications[J]. Biometrics 53(1), 388 (1997). https://doi.org/10.2307/2533129

    Article  Google Scholar 

  25. Zhou, W., Liu, W., Wang, Y., et al.: Performance evaluation of gas-fired heating and hot-water boilers based on principal component analysis[J]. J. Eng. Technol. 10(1), 65-81 (2019)

  26. Liu, W., Zhou, W., Yang, L., et al.: Investigation on the performance evaluation of gas-fired combi-boilers with factor analysis and cluster analysis[J]. SN Appl Sci 2(6), 1–10 (2020). https://doi.org/10.1007/s42452-020-2931-9

    Article  Google Scholar 

  27. Flynn, N., Mcloone, S., Irwin, G.W., et al.: Neural control of turbogenerator systems. Autom 33(11), 1961–1973 (1997). https://doi.org/10.1016/S0005-1098(97)00142-8

    Article  Google Scholar 

  28. Chandok, J.S., Kar, I.N., Tuli, S.: Estimation of furnace exit gas temperature (FEGT) using optimized radial basis and back-propagation neural networks[J]. Energy Convers. Manage. 49(8), 1989–1998 (2008). https://doi.org/10.1016/j.enconman.2008.03.011

    Article  Google Scholar 

  29. Jin, Q., Lin, N., Zhang, Y.: K-Means clustering algorithm based on chaotic adaptive artificial bee colony[J]. Algorithms 14(2), 53 (2021). https://doi.org/10.3390/a14020053

    Article  Google Scholar 

  30. Ramadhani, F., Zarlis, M., Suwilo, S.: Improve birch algorithm for big data clustering. IOP Conf. Ser. Mater. Sci. Eng. 725, 012090 (2020). https://doi.org/10.1088/1757-899X/725/1/012090

    Article  Google Scholar 

Download references

Funding

This research was funded by the Key Research and Development Program of Tianjin under grant number 19YFZCCG00550 and Innovation Platform Special Project of Tianjin under grant number 19PTSYJC00090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiye Zhou.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Gao, W., Ma, H. et al. Steady-State NOx Emission Model for Gas-Fired Heating and Hot Water Combi-Boilers with Factor Analysis and Artificial Neural Network. Emiss. Control Sci. Technol. 8, 182–191 (2022). https://doi.org/10.1007/s40825-022-00216-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-022-00216-7

Keywords

Navigation