Uniform provisions concerning the approval of vehicles with regard to the emission of pollutants according to engine fuel requirements. Regulation No 83 of the Economic Commission for Europe of the United Nations. (2012). https://eur-lex.europa.eu/eli/reg/2012/83/oj. Accessed 21 Jan 2020
Zhao, F., Lai, M.C., Harrington, D.L.: Automotive spark-ignited direct-injection gasoline engines. Prog. Energy Combust. Sci. 25, 437–562 (1999)
Article
Google Scholar
Comte, P., Czerwinski, J., Keller, A., Kumar, N., Muñoz, M., Pieber, S., Prévôt, A., Wichser, A., Heeb, N.: Current Status and New Concepts of Gasoline Vehicle Emission Control for Organic, Metallic and Particulate Non-Legislative Pollutants. Swiss Federal Laboratories for Materials Science and Technology. (2017). https://www.empa.ch/documents/56164/1183406/GASOMEP+Final+Scientific+Report+2017+submitted+Nov.pdf. Accessed 11 Jan 2019
Dockery, D.W.: Epidemiologic Evidence of Cardiovascular Effects of Particulate Air Pollution. Environ. Health Perspect. 109(4), 483–486 (2001)
Google Scholar
An, Y., Teng, S., Pei, Y., Qin, J., Li, X., Zhao, H.: An experimental study of polycyclic aromatic hydrocarbons and soot emissions from a GDI engine fuelled with commercial gasoline. Fuel. 164, 160–171 (2016)
Article
Google Scholar
Nel, A.: Air Pollution-Related Illness: Effects of Particles. Science. 308(5723), 804–806 (2005)
Article
Google Scholar
Joshi, A.: Progress and outlook on gasoline vehicle after treatment systems. Johnson Matthey Technol. Rev. 61(4), 311–325 (2017)
Article
Google Scholar
Morgan, C.: Platinum Group Metal and Washcoat Chemistry Effects on Coated Gasoline Particulate Filter Design. Johnson Matthey Technol. Rev. 59(3), 188–192 (2015)
Article
Google Scholar
Reddy, B.M., Vinod Kumar, T., Durgasri, N.: New Developments in Ceria Based Mixed Oxide Synthesis and Reactivity in Combustion and Oxidation Reactions. In: Trovarelli, A., Fornasiero, P. (eds.) Catalysis by Ceria and Related Materials, 2nd edn, pp. 397–459. Imperial College Press, London (2013)
Chapter
Google Scholar
Devaiah, D., Reddy, L., Park, S., Reddy, B.: Ceria–zirconia mixed oxides: Synthetic methods and applications. Catal. Rev. 60(2), 177–277 (2018)
Article
Google Scholar
Mamontov, E., Egami, T., Brezny, R., Koranne, M., Tyagi, S.: Lattice Defects and Oxygen Storage Capacity of Nanocrystalline Ceria and Ceria-Zirconia. J. Phys. Chem. B. 104, 11110–11116 (2000)
Article
Google Scholar
Zhao, B., Wang, Q., Li, G., Zhou, R.: Effect of rare earth (La, Nd, Pr, Sm and Y) on the performance of Pd/Ce0.67Zr0.33MO2-δ three-way catalysts. J. Environ. Chem. Eng. 1(3), 534–543 (2013)
Article
Google Scholar
Frolova, E., Ivanovskaya, M., Sadykov, V., Alikina, G., Lukashevich, A., Neophytides, S.: Properties of Ce-Zr-La-O nano-system with ruthenium modified surface. Prog. Solid State Ch. 33, 317–325 (2005)
Article
Google Scholar
Aneggi, E., de Leitenburg, C., Dolcetti, G., Trovarelli, A.: Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2-ZrO2. Catal. Today. 114(1), 40–47 (2006)
Article
Google Scholar
Zhou, Y., Deng, J., Xiong, L., Wang, J., Yuan, S., Zhang, H., Chen, Y.: Synthesis and study of nanostructured Ce-Zr-La-RE-O (RE = Y, Nd and Pr) quaternary solid solutions and their supported three-way catalysts. Mater. Design. 130, 149–156 (2017)
Article
Google Scholar
Zhou, Y., Deng, J., Lan, L., Wang, J., Yuan, S., Gong, M., Chen, Y.: Remarkably promoted low-temperature reducibility and thermal stability of CeO2–ZrO2–La2O3–Nd2O3 by a urea-assisted low-temperature (90 °C) hydrothermal procedure. J. Mater. Sci. 52(10), 5894–5907 (2017)
Article
Google Scholar
Zhou, Y., Xiong, L., Deng, J., Wang, J., Yuan, S., Lan, L., Chen, Y.: Facile synthesis of high surface area nanostructured ceria-zirconia-yttria-lanthana solid solutions with the assistance of lauric acid and dodecylamine. Mater. Res. Bull. 99, 281–291 (2018)
Article
Google Scholar
Weng, X., Perston, B., Wang, Z.X., Abrahams, I., Lin, T., Yang, S., Evans, J.R.G., Morgan, D.J., Carley, A.F., Bowker, M., Knowles, J.C., Rehman, I., Darr, J.A.: Synthesis and characterization of doped nano-sized ceria–zirconia solid solutions. Appl. Catal. B Environ. 90, 405–415 (2009)
Article
Google Scholar
Kallay, N., Žalac, S.: Stability of nanodispersions: a model for kinetics of aggregation of nanoparticles. J. Colloid Interface Sci. 253(1), 70–76 (2002)
Article
Google Scholar
Livage, J., Lemerle, J.: Transition Metal Oxide Gels and Colloids. Annu. Rev. Mater. Sci. 12, 103–122 (1982)
Article
Google Scholar
Suttiponparnit, K., Jiang, J., Sahu, M., Suvachittanont, S., Charinpanitkul, T., Biswas, P.: Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties. Nanoscale Res. Lett. 6(27), 1–8 (2011)
Google Scholar
Kosmulski, M.: Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks' review. Adv. Colloid Interfac. 238, 1–61 (2016)
Article
Google Scholar
Kosmulski, M.: Chemical Properties of Material Surfaces. Marcel Dekker, New York (2001)
Book
Google Scholar
Kaspar, J., Fornasiero, P., Balducci, G., Di Monte, R., Hickey, N., Sergo, V.: Effect of ZrO2 content on textural and structural properties of CeO2-ZrO2 solid solutions made by citrate complexation route. Inorg. Chim. Acta. 349, 217–226 (2003)
Article
Google Scholar
Thommes, M., Kaneko, K., Neimark, A., Olivier, J., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 57(9-10), 1051–1069 (2015)
Article
Google Scholar
Yashima, M.: Crystal and electronic structures, structural disorder, phase transformation, and phase diagram of ceria-zirconia and ceria-based materials. In: Trovarelli, A., Fornasiero, P. (eds.) Catalysis by Ceria and Related Materials, 2nd edn, pp. 397–459. Imperial College Press, London (2013)
Google Scholar
Zhang, F., Chen, C., Hanson, J., Robinson, R., Herman, I., Chan, S.: Phases in ceria-zirconia binary oxide (1-x)CeO2-xZrO2 Nanoparticles: The effect of particle size. J. Am. Ceram. Soc. 89(3), 1028–1036 (2006)
Article
Google Scholar
Yashima, M., Arashi, H., Kakihana, M., Yoshimura, M.: Raman Scattering Study of Cubic-Tetragonal Phase Transition in Zr1-xCexO2 Solid Solution. J. Am. Ceram. Soc. 77(4), 1067–1071 (1994)
Article
Google Scholar
Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1971)
Google Scholar
Nakamura, K., Fujitsuka, M., Kitajima.: Disorder-induced line broadening in first-order Raman scattering from graphite. Phys. Rev. B. 41, 12260–12263 (1990)
Article
Google Scholar
Liotta, L., Pantaleo, G., Macaluso, A., Marci, G., Gealanella, S., Deganello, G.: Ceria-Zirconia Nanostructured Materials for Catalytic Applications: Textural Characteristics and Redox Properties. J. Sol-Gel Sci. Techn. 28, 119–132 (2003)
Article
Google Scholar
Seong, H., Choi, S., Matusik, K.E., Kastengren, A.L., Powell, C.F.: 3D pore analysis of gasoline particulate filters using X-ray tomography: impact of coating and ash loading. J. Mater. Sci. 54, 6053–6065 (2019)
Article
Google Scholar
Nakayama, H., Banno, Y., Mochizuki, H., Hara, H., Takayama, A., Nagata, M., Sasaki, Y., Yoneyama, S.: Development of GPF Using Micro-CT Measurement and Numerical Analytical Technique. Top. Catal. 62(1-4), 419–425 (2019)
Article
Google Scholar
Kočí, P., Isoz, M., Plachá, M., Arvajová, A., Václavík, M., Svoboda, M., Price, E., Novák, V., Thompsett, D.: 3D reconstruction and pore-scale modeling of coated catalytic filters for automotive exhaust gas aftertreatment. Catal. Today. 320, 165–174 (2019)
Article
Google Scholar