Skip to main content

Estimating Road Transport Pollutant Emissions Under Traffic-Congested Conditions with an Integrated Modelling Tool—Emissions Reduction Scenarios Analysis

Abstract

This study aims to investigate, in microscale, the pollutant emissions due to road traffic under traffic-congested conditions at street level and the impacts on air quality of traffic emissions reduction scenarios by applying an Integrated Modelling Tool (IMT) for a main road axis in Thessaloniki, Greece. ΙΜΤ links a real-world traffic model, a dynamic emissions model and a Lagrangian dispersion model coupled with a boundary layer flow module. Pollutant emissions from cars at edges with traffic lights were + 30% higher than those estimated at other edges while NOx emissions were + 22% higher at the edges with bus stops. A comparison of the IMT and COPERT Street Level emissions results showed that the IMT emissions were higher than the COPERT Street Level emissions for roads with traffic lights or bus stops, characterized by high variability in vehicle speed per second due to stopping and accelerating. This resulted in up to 2 times higher NOx emissions. IMT was applied to assess the impact on the atmospheric environment of the redesign of the road axis promoting sustainable urban transportation. A reduction by − 20% of the cars and motorcycles traffic flows in combination with the increase by a factor of 2 of the frequency in the circulation of city buses replaced with battery electric vehicles will result in lower pollutant and CO2 emissions ranging from − 29 to − 41%. Reductions of about − 65% in the road traffic NOx maximum concentration levels were also estimated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

Data and material are available after communication with the corresponding author.

Code availability

The code of IMT is not available. The IMT is available to users as an online model under licence terms.

References

  1. 1.

    Aifadopoulou, G., Morfoulaki, M., Chrysostomou, K., Porfiri, K., Petrou, A.: Deliverable 3. Evaluation of the final proposal for the upgrade of the pilot road axis. Project: REMEDIO “REgenerating mixed - use MED urban communities congested by traffic through Innovative low carbon mobility sOlutions”. Centre for Research and Technology Hellas - Hellenic Institute of Transport (CERTH/HIT) delivered to Major Development Agency Thessaloniki S.A (MDAT) (2018)

  2. 2.

    AIMSUN Version 8.2 User’s Manual TSS – Transport Simulation Systems (2017)

  3. 3.

    Blokpoel, R., Hausberger, S., Krajzewicz, D., Vreeswijk, J.: Emission optimized control for isolated intersections. 22nd ITS World Congress, Bordeaux, France. Paper Number ITS-2109 (2015)

  4. 4.

    Borge, R., de Miguel, I., de la Paz, D., Lumbreras, J., Perez, J., Rodriguez, E.: Comparison of road traffic emission models in Madrid (Spain). Atmos. Environ. 62, 461–471 (2012). https://doi.org/10.1016/j.atmosenv.2012.08.073

    Article  Google Scholar 

  5. 5.

    Borrego, C., Tchepel, O., Barros, N., Miranda, A.I.: Impact of road traffic emissions on air quality of the Lisbon region. Atmos. Environ. 34, 4683–4690 (2000)

    Article  Google Scholar 

  6. 6.

    Borrego, C., Tchepel, O., Costa, A.M., Amorim, J.H., Miranda, A.I.: Emission and dispersion modelling of Lisbon air quality at local scale. Atmos. Environ. 37(37), 5197–5205 (2003)

    Article  Google Scholar 

  7. 7.

    Borrego, C., Tchepel, O., Costa, A.M., Martins, H., Ferreira, J., Miranda, A.I.: Traffic-related particulate air pollution exposure in urban areas. Atmos. Environ. 40, 7205–7214 (2006). https://doi.org/10.1016/j.atmosenv.2006.06.020

    Article  Google Scholar 

  8. 8.

    Brand, C., Goodman, A., Ogilvie, D.: Evaluating the impacts of new walking and cycling infrastructure on carbon dioxide emissions from motorized travel: a controlled longitudinal study. Appl. Energy 128, 284–295 (2014)

    Article  Google Scholar 

  9. 9.

    Chiusolo, M., Cadum, E., Stafoggia, M., Galassi, C., Berti, G., Faustini, A., Bisanti, L., et al.: Short-term effects of nitrogen dioxide on mortality and susceptibility factors in 10 Italian cities: the EpiAir study. Environ. Health Perspect. 119(9), 1233–1238 (2011). https://doi.org/10.1289/ehp.1002904

    Article  Google Scholar 

  10. 10.

    Chrysostomou, K., Petrou, A., Aifadopoulou, G., Morfoulaki, M.: Microsimulation modelling of the impacts of double-parking along an urban axis. In: Nathanail E., Karakikes I. (eds) Data Analytics: Paving the Way to Sustainable Urban Mobility. CSUM 2018. Advances in Intelligent Systems and Computing, vol 879. Cham: Springer (2019)

  11. 11.

    COPERT Street Level user’s manual v2.2.53. Emisia Mission for Environment (www.emisia.com)

  12. 12.

    De Coensel, B., Can, A., Degraeuwe, B., De Vlieger, I., Botteldooren, D.: Effects of traffic signal coordination on noise and air pollutant emissions. Environ. Model. Softw. 35, 74–83 (2012)

    Article  Google Scholar 

  13. 13.

    Degraeuwe, B., Thunis, P., Clappier, A., Weiss, M., Lefebvre, W., Janssen, S., Vranckx, S.: Impact of passenger car NOX emissions on urban NO2 pollution – scenario analysis for 8 European cities. Atmos. Environ. 171, 330–337 (2017). https://doi.org/10.1016/j.atmosenv.2017.10.040

    Article  Google Scholar 

  14. 14.

    EC: White Paper. Roadmap to a Single European Transport Area – Towards a Competitive and Resource Efficient Transport System. European Commission, COM(2011) 144 final (2011)

  15. 15.

    EEA: EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016. 1.A.3.b.i, 1.A.3.b.ii, 1.A.3.b.iii, 1.A.3.b.iv Passenger Cars, Light Commercial Trucks, Heavy-duty Vehicles Including Buses and Motor Cycles. – Update Jul. 2018 (2018)

  16. 16.

    EEA Report: Air Quality in Europe – 2018 Report. European Environment Agency. ISSN 1977–8449 (2018)

  17. 17.

    EL.STAT: Demographic Characteristics 2011 Census (2011)

  18. 18.

    EL. STAT: Motor vehicles in operation, by category and use per Greek prefecture. January 2018. https://www.statistics.gr/en/statistics/-/publication/SME18/ (2018)

  19. 19.

    Erdmann, J., Rummel, J., Wagner, P.: SUMO and the German Handbook for the Dimensioning of Highways (HBS). Towards Simulation for Autonomous Mobility Lecture Notes in Mobility. Springer (2017)

  20. 20.

    Fameli, K.M., Assimakopoulos, V.D.: Development of a road transport emission inventory for Greece and the Greater Athens Area: effects of important parameters. Sci. Total Environ. 505(2015), 770–786 (2015)

    Article  Google Scholar 

  21. 21.

    Hausberger, S., Zallinger, M., Luz, M.: Emission Factors from the Model PHEM for the HBEFA Version 3. Report Nr. I-20/2009 Haus-Em 33/08/679 from 07.12.2009. Graz University of Technology (2009)

  22. 22.

    Hausberger, S. & Krajzewicz, D.: COLOMBO: Deliverable 4.2 - Extended Simulation Tool PHEM Coupled to SUMO with User Guide (2014)

  23. 23.

    HBEFA: Handbuch Emissionsfaktoren des Strassenverkehrs 3.1 — Dokumentation. Infras, UBA, Berlin. BUWAL, Bern/UBA, Wien. Available from: www.hbefa.net (2010)

  24. 24.

    Kephalopoulos, S., Paviotti, M., Anfosso-Lédée, F.: Common noise assessment methods in Europe (CNOSSOS-EU) (2012). https://doi.org/10.2788/31776

  25. 25.

    Liu, R., van Vliet, D., Watling, D.: Microsimulation models incorporating both demand and supply dynamics. Transp Res 40A(2):125–50 (2006)

  26. 26.

    López, E., Palomo, F., Liora, N., Kontos, S., Almedia-Silva, M., Baptista, P., Liguori, F., Lorenzet, K., Fernandez, R., Ortiz, C., Poupkou, A., Meleti, Ch., Melas, D., Patti, S., Faria, M.V., Ferreira, J. and Lanera C.: Integrated modelling tool for the analysis of traffic-congested roads in urban centers. In: Proceedings of the 14th International Conference on Meteorology, Climatology and Atmospheric Physics (COMECAP 2018), 15–17 October 2018, Alexandroupolis, pp. 852–857 (2018)

  27. 27.

    Lopez, P.A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich, R., Lücken, L., Rummel, J., Wagner, P., and Wießner, E.: Microscopic traffic simulation using SUMO. IEEE Intelligent Transportation Systems Conference (ITSC), 2018. The 21st IEEE International Conference on Intelligent Transportation Systems, 4.-7. Nov. 2018, Maui (2018)

  28. 28.

    Madireddy, M., De Coensel, B., Can, A., Degraeuwe, B., Beusen, B., De Vlieger, I., Botteldooren, D.: Assessment of the impact of speed limit reduction and traffic signal coordination on vehicle emissions using an integrated approach. Transp. Res. D-Tr E. 16, 504–508 (2011). https://doi.org/10.1016/j.trd.2011.06.001

    Article  Google Scholar 

  29. 29.

    Markakis, K., Poupkou, A., Melas, D., Tzoumaka, P., Petrakakis, M.: A computational approach based on GIS technology for the development of an anthropogenic emission inventory of gaseous pollutants in Greece. Water Air Soil Pollut. 207, 157–180 (2010a)

    Article  Google Scholar 

  30. 30.

    Markakis, K., Poupkou, A., Melas, D., Zerefos, C.: A GIS based anthropogenic PM10 emission inventory for Greece. Atmos. Pollut. Res. 1:71‐81 (2010b)

  31. 31.

    Markakis, K., Katragkou, E., Poupkou, A., Melas, D.: MOSESS: a new emission model for the compilation of model-ready emission inventories. Application in a coal mining area in Northern Greece. Environ. Model. Assess. 18, 509–521 (2013)

    Article  Google Scholar 

  32. 32.

    Melas, D., Liora, N, Poupkou, A., Kontos, S., Meleti, Ch., Liguori, F., Patti, S., Baptista, P., Ferreira, J., Almedia-Silva, M., Chacartegui, R., López, E., Ortiz, C., Faria, A.M., Lanera, C., Zounza, S., Chrysostomou, K., Kelessis, A., Yiannakou, A., Tzoumaka, P., Aifadopoulou, G., Kalogirou, C.: Environmental analysis in traffic-congested roads using an integrated modelling tool. 1st Scientific Conference PANACEA September 23–24, 2019 Crete (2019)

  33. 33.

    Moussiopoulos, Ν, Vlachokostas, Ch., Tsilingiridis, G., Douros, I., Hourdakis, E., Naneris, C., Sidiropoulos, C.: Air quality status in Greater Thessaloniki Area and the emission reductions needed for attaining the EU air quality legislation. Sci. Total Environ. 407(2009), 1268–1285 (2009). https://doi.org/10.1016/j.scitotenv.2008.10.034

    Article  Google Scholar 

  34. 34.

    Neumann, T. Heinrichs, M., Behrisch, M., Erdmann, J., Sauerländer-Biebl, A.: Quantitative analysis of future scenarios of urban mobility using agent-based simulation - a case study. Transportation Research Procedia, 41, Seiten 295–308. Elsevier (2019). https://doi.org/10.1016/j.trpro.2019.09.050 ISSN 2352–1457

  35. 35.

    Ntziachristos, L., Gkatzoflias, D., Kouridis, C., Samaras, Z.: COPERT: a European road transport emission inventory model. Athanasiadis, I.N., Rizzoli, A.E., Mitkas, P.A., Gómez, J.M. (eds) Information Technologies in Environmental Engineering. Environmental Science and Engineering. Berlin: Springer (2009)

  36. 36.

    Panis, L.I., Broekx, S., Liu, R.: Modelling instantaneous traffic emission and the influence of traffic speed limits. The Science of the total environment 371(1–3), 270–285 (2006)

    Article  Google Scholar 

  37. 37.

    PHEMLight User Guide Version 1. Passenger Car and Heavy Duty Emission Model. Technische Universität Graz. Erzherzog-Johann-Universität
INSTITUT FÜR VERBRENNUNGSKRAFT -MASCHINEN UND THERMODYNAMIK

  38. 38.

    Poupkou, A., Symeonidis, P., Ziomas, I., Melas, D., Markakis, K.: A spatially and temporally disaggregated anthropogenic emission inventory in the southern Balkan Region. Water Air Soil Pollut. 185, 335–348 (2007)

    Article  Google Scholar 

  39. 39.

    Poupkou, A., Zountsa, S., Chrysostomou, K., Kelessis, A., Yiannakou, A., Liora, N., Kontos, S., Rizos, K., Dimopoulos, S., Giannaros, C., Tzoumaka, P., Aifadopoulou, G., Kalogirou, C., Meleti, Ch. and Melas, D.: Environmental assessment of low carbon mobility solutions with the use of an integrated modeling tool. 14th International Conference on Meteorology, Climatology and Atmospheric Physics (COMECAP 2018), 15–17 October 2018, Alexandroupolis (2018)

  40. 40.

    Quaassdorff, C., Borge, R., Pérez, J., Lumbreras, J., de la Paz, D., de Andrés, J.M.: Microscale traffic simulation and emission estimation in a heavily trafficked roundabout in Madrid (Spain). Sci. Total Environ. 566–567(2016), 416–427 (2016). https://doi.org/10.1016/j.scitotenv.2016.05.051

    Article  Google Scholar 

  41. 41.

    REMEDIO: Assessment report (Deliverable 3.5.1), integrated tool and low carbon mobility solutions assessment (Activity 3.5), October 2019 (https://remedio.interreg-med.eu/) (2019a)

  42. 42.

    REMEDIO: Methodological path of governance arrangements under REMEDIO Project (Deliverable 4.2.2), participatory governance for urban mobility solutions (Activity 4.2), October 2019. (https://remedio.interreg-med.eu/) (2019b).

  43. 43.

    REMEDIO: Transferability Plan of REMEDIO Project (Deliverable 4.3.2), October 2019 (2019c)

  44. 44.

    Rexeis, M., Dippold, M., Luz, R., Hausberger, S., Haberl, M., Krajzewicz, D., Wagner, P., Wölki, M., Blokpoel, R., Stützle, T., Dubois-Lacoste, J.: COLOMBO: Deliverable 4.3 Pollutant Emission Models and Optimisation (2014)

  45. 45.

    Rodler, S.J., Sturm, P., Rexeis, M.: Emission factors for heavy-duty vehicles and validation by tunnel measurements. Atmos. Environ. 37(37), 5237–5245 (2003). https://doi.org/10.1016/j.atmosenv.2003.05.002

    Article  Google Scholar 

  46. 46.

    Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W., Powers, J.G.: A description of the advanced research WRF version 3. NCAR Technical Note (NCAR/TN – 475 + STR), Boulder (2008)

  47. 47.

    Smit, R., Smokers, R., Rabe, E.: A new modelling approach for road traffic emissions: VERSIT+. Transp Res Part D: Transp Environ 12(6), 414–422 (2007). https://doi.org/10.1016/j.trd.2007.05.001

    Article  Google Scholar 

  48. 48.

    Sun, D., Zhang, Y., Xue, R., Zhang, Y.: Modeling carbon emissions from urban traffic system using mobile monitoring. Sci. Total Environ. 599–600, 944–951 (2017)

    Article  Google Scholar 

  49. 49.

    Sun, Zhang: Influence of avenue trees on traffic pollutant dispersion in asymmetric street canyons: numerical modeling with empirical analysis. Transp. Res. D: Transp. Environ. 65, 784–795 (2018)

    Article  Google Scholar 

  50. 50.

    Uherek, E., Halenka, T., Borken-Kleefeld, J., Balkanski, Y., Berntsen, T., Borrego, C., Gauss, M., Hoor, P., Juda-Rezler, K., Lelieveld, J., Melas, D., Rypdal, K., Schmid, S.: Transport impacts on atmosphere and climate: land transport. Atmos. Environ. 44(2010): 4772e4816 (2010). https://doi.org/10.1016/j.atmosenv.2010.01.002

  51. 51.

    Wang, Y., Szeto, W.Y., Han, K., Friesz, T.L.: Dynamic traffic assignment: a review of the methodological advances for environmentally sustainable road transportation applications. Transp. Res. B Methodol. 111, 370–394 (2018). https://doi.org/10.1016/j.trb.2018.03.011

    Article  Google Scholar 

  52. 52.

    Wismans, L., van den Brink, M., Brederode, L.,Zantema, K., van Berkum, E.: Comparison of estimation of emissions based on static and dynamic traffic assignment models. Proceedings of 92th Annual Meeting of the Transportation Board, 13–17 January 2013, Washington DC (2013)

  53. 53.

    Zhang, R., Fujimori, S. and Hanaoka, T.: The contribution of transport policies to the mitigation potential and cost of 2 °C and 1.5 °C goals. Environ. Res. Lett. 13:054008 (2018)

Download references

Funding

The present study has been financed by the European Transnational Cooperation Programme INTERREG MED 2014–2020 project REMEDIO (REgenerating mixed-use MED urban communities congested by traffic through Innovative low carbon mobility sOlutions), co-financed by the European Regional Development Fund and by National Funds.

Author information

Affiliations

Authors

Contributions

Natalia Liora: Methodology—data gathering, analysis and interpretation of data.

Anastasia Poupkou: Methodology—critical revision.

Kontos Serafim: Methodology.

Charikleia Meleti: Methodology—critical revision.

Katerina Chrysostomou: Experiment.

Georgia Aifadopoulou: Experiment.

Stella Zountsa: Experiment.

Chrisostomos Kalogirou: Experiment.

Ricardo Chacartegui: Methodology.

Francesca Liguori: Methodology.

Massimo Bressan: Methodology.

Susana Marta Almeida: Methodology.

Dimitrios Melas: Methodology—critical revision.

Corresponding author

Correspondence to Natalia Liora.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2192 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liora, N., Poupkou, A., Kontos, S. et al. Estimating Road Transport Pollutant Emissions Under Traffic-Congested Conditions with an Integrated Modelling Tool—Emissions Reduction Scenarios Analysis. Emiss. Control Sci. Technol. 7, 137–152 (2021). https://doi.org/10.1007/s40825-021-00191-5

Download citation

Keywords

  • Road traffic emissions
  • Integrated Modelling Tool
  • COPERT Street Level
  • Traffic emissions reduction scenarios