Spatial Distribution of CO2 Verified Emissions: a Kriging-Based Approach

Abstract

Reducing carbon dioxide (CO2) anthropogenic emissions is an essential goal for combating climate change, and firms and policymakers must be aware of the main polluting areas of intervention for health, economic and environmental improvement, and mapping emissions is a relevant instrument to measure their geospatial distribution in order to reach that goal. Verified carbon emissions within the European Union mechanisms are a direct source of information that has not been previously used for mapping purposes. Through the application of universal kriging techniques, the proposed model shows the spatial variations of CO2 industrial emissions in the Spanish provinces and the contribution of the most polluting sectors, helping to understand the spatial CO2 emission dynamics in order to establish adequate environmental policies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Abushammala, M.F.M., Basri, N.E.A., Basri, H., Kadhum, A.A.H., El-Shafie, A.H.: Methane and carbon dioxide emissions from Sungai Sedu open dumping during wet season in Malaysia. Ecol. Eng. 49, 254–263 (2012). https://doi.org/10.1016/j.ecoleng.2012.08.013

    Article  Google Scholar 

  2. 2.

    Adams, M.D., Kanaroglou, P.S.: A criticality index for air pollution monitors. Atmospheric Pollution Research. 7(3), 482–487 (2016). https://doi.org/10.1016/j.apr.2015.11.004

    Article  Google Scholar 

  3. 3.

    Alsamamra, H., Ruiz-Arias, J.A., Pozo-Vázquez, D., Tovar-Pescador, J.: A comparative study of ordinary and residual kriging techniques for mapping global solar radiation over southern Spain. Agric. For. Meteorol. 149(8), 1343–1357 (2009). https://doi.org/10.1016/j.agrformet.2009.03.005

    Article  Google Scholar 

  4. 4.

    Asa, E., Saafi, M., Membah, J., Billa, A.: Comparison of linear and nonlinear kriging methods for characterization and interpolation of soil data. J. Comput. Civ. Eng. 26(1), 11–18 (2012). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000118

    Article  Google Scholar 

  5. 5.

    Barcelo, L., Kline, J., Walenta, G., Gartner, E.: Cement and carbon emissions. Materials and Structures/Materiaux et Constructions. 47(6), 1055–1065 (2014). https://doi.org/10.1617/s11527-013-0114-5

    Article  Google Scholar 

  6. 6.

    Beauchamp, M., Fouquet, C.D.: Dealing with non-stationarity through explanatory variables in kriging-based air quality maps. Spatial Statistics. 22, 18–46 (2017). https://doi.org/10.1016/j.spasta.2017.08.003

    Article  Google Scholar 

  7. 7.

    Beauchamp, M., Malherbe, L., de Fouquet, C., Létinois, L., Tognet, F.: A polynomial approximation of the traffic contributions for kriging-based interpolation of urban air quality model. Environ. Model. Softw. 105, 132–152 (2018). https://doi.org/10.1016/j.envsoft.2018.03.033

    Article  Google Scholar 

  8. 8.

    Bilgili, A.V.: Spatial assessment of soil salinity in the Harran Plain using multiple kriging techniques. Environ. Monit. Assess. 185(1), 777–795 (2013). https://doi.org/10.1007/s10661-012-2591-3

    Article  Google Scholar 

  9. 9.

    Bleuler, M., Farina, R., Francaviglia, R., Napoli, R., Marchetti, A.: Modelling the impacts of different carbon sources on the soil organic carbon stock and CO2 emissions in the Foggia province (Southern Italy). Agric. Syst. 157(March), 258–268 (2017). https://doi.org/10.1016/j.agsy.2017.07.017

    Article  Google Scholar 

  10. 10.

    Box, G.E.P., Cox, D.R.: An analysis of transformations. J R Stat. Soc Series B (Methodological). 26(2), 211–252 (1964)

    Google Scholar 

  11. 11.

    BP. (2020). Statistical Review of World Energy. Retrieved from www.bp.com/statisticalreview

  12. 12.

    Brouwers, R., Schoubben, F., Van Hulle, C., Van Uytbergen, S.: The initial impact of EU ETS verification events on stock prices. Energy Policy. 94, 138–149 (2016). https://doi.org/10.1016/j.enpol.2016.04.006

    Article  Google Scholar 

  13. 13.

    Burrough, P.A., McDonnell, R.A.: Principles of geographical information systems. Oxford University Press, Oxford (1998)

    Google Scholar 

  14. 14.

    Cao, Z., Wu, Z., Li, S., Ma, W., Deng, Y., Sun, H., Guan, W.: Exploring spatiotemporal variation characteristics of exceedance air pollution risk using social media big data. Environ. Res. Lett. 15(11), 114049 (2020). https://doi.org/10.1088/1748-9326/abbd62

    Article  Google Scholar 

  15. 15.

    Carratala, A., Gomez, A., Bellot, J.: Mapping rain composition in the east of Spain by applying kriging. Water Air Soil Pollut. 104(1–2), 9–27 (1998). https://doi.org/10.1023/A:1004993809263

    Article  Google Scholar 

  16. 16.

    Cecinati, F., de Niet, A., Sawicka, K., Rico-Ramirez, M.: Optimal temporal resolution of rainfall for urban applications and uncertainty propagation. Water. 9(10), 0762 (2017). https://doi.org/10.3390/w9100762

    Article  Google Scholar 

  17. 17.

    Chakraborty, S., Man, T., Paulette, L., Deb, S., Li, B., Weindorf, D.C., Frazier, M.: Rapid assessment of smelter/mining soil contamination via portable X-ray fluorescence spectrometry and indicator kriging. Geoderma. 306(June), 108–119 (2017). https://doi.org/10.1016/j.geoderma.2017.07.003

    Article  Google Scholar 

  18. 18.

    Chen, T.H., Hsu, Y.C., Zeng, Y.T., Candice Lung, S.C., Su, H.J., Chao, H.J., Wu, C.D.: A hybrid kriging/land-use regression model with Asian culture-specific sources to assess NO2 spatial-temporal variations. Environ. Pollut. 259, 113875 (2020). https://doi.org/10.1016/j.envpol.2019.113875

    Article  Google Scholar 

  19. 19.

    Choudhury, S.: Comparative study on linear and non-linear geo-statistical estimation methods: a case study on Iron deposit. Procedia Earth and Planetary Science. 11, 131–139 (2015). https://doi.org/10.1016/j.proeps.2015.06.017

    Article  Google Scholar 

  20. 20.

    Ciais, P., Paris, J.D., Marland, G., Peylin, P., Piao, S.L., Levin, I., et al.: The European carbon balance. Part 1: fossil fuel emissions. Glob. Chang. Biol. 16(5), 1395–1408 (2010). https://doi.org/10.1111/j.1365-2486.2009.02098.x

    Article  Google Scholar 

  21. 21.

    Cousin, A., Maatouk, H., Rullière, D.: Kriging of financial term-structures. Eur. J. Oper. Res. 255(2), 631–648 (2016). https://doi.org/10.1016/j.ejor.2016.05.057

    Article  Google Scholar 

  22. 22.

    Cressie, N.: Fitting variogram models by weighted least squares. J. Int. Assoc. Math. Geol. 17(5), 563–586 (1985). https://doi.org/10.1007/BF01032109

    Article  Google Scholar 

  23. 23.

    Cressie, N.: Spatial prediction and ordinary kriging. Math. Geol. 20(4), 405–421 (1988). https://doi.org/10.1007/BF00892986

    Article  Google Scholar 

  24. 24.

    Cressie, N.: Statistics for spatial data (Revised edition). John Wiley & Sons (2015)

  25. 25.

    Cui, X., Lei, Y., Zhang, F., Zhang, X., Wu, F.: Mapping spatiotemporal variations of CO2 (carbon dioxide) emissions using nighttime light data in Guangdong Province. Phys. Chem. Earth. 110, 89–98 (2019). https://doi.org/10.1016/j.pce.2019.01.007

    Article  Google Scholar 

  26. 26.

    Desassis, N., Renard, D.: Automatic variogram modeling by iterative least squares: univariate and multivariate cases. Math. Geosci. 45(4), 453–470 (2013). https://doi.org/10.1007/s11004-012-9434-1

    Article  Google Scholar 

  27. 27.

    DICES. (2019). Cartographic directory of Spain. Retrieved from http://www.dices.net/poblaciones/4292.html

  28. 28.

    Diggle, P.J., Menezes, R., Su, T.-L.: Geostatistical inference under preferential sampling. J. R. Stat. Soc.: Ser. C: Appl. Stat. 59(2), 191–232 (2010). https://doi.org/10.1111/j.1467-9876.2009.00701.x

    Article  Google Scholar 

  29. 29.

    Diggle, P.J., Tawn, J.A., Moyeed, R.A.: Model-based geostatistics. J. R. Stat. Soc.: Ser. C: Appl. Stat. 47(3), 299–350 (1998). https://doi.org/10.1111/1467-9876.00113

    Article  Google Scholar 

  30. 30.

    Dinda, S.: Environmental Kuznets Curve hypothesis: a survey. Ecol. Econ. 49(4), 431–455 (2004). https://doi.org/10.1016/j.ecolecon.2004.02.011

    Article  Google Scholar 

  31. 31.

    Du, C., Liu, E., Chen, N., Wang, W., Gui, Z., He, X.: Factorial kriging analysis and pollution evaluation of potentially toxic elements in soils in a phosphorus-rich area, South Central China. J. Geochem. Explor. 175, 138–147 (2017). https://doi.org/10.1016/j.gexplo.2017.01.010

    Article  Google Scholar 

  32. 32.

    EEA. (2015). Liberación de contaminantes al medio ambiente del sector industrial europeo (technical report). Retrieved from https://www.eea.europa.eu/themes/industry/industrial-pollution-in-europe/releases-of-pollutants-from-industrial-sector

  33. 33.

    Eguía, P., Granada, E., Alonso, J.M., Arce, E., Saavedra, A.: Weather datasets generated using kriging techniques to calibrate building thermal simulations with TRNSYS. Journal of Building Engineering. 7, 78–91 (2016). https://doi.org/10.1016/j.jobe.2016.05.007

    Article  Google Scholar 

  34. 34.

    ESRI. (2019). ESRI Map Service. Retrieved from http://www.arcgis.com/home/gallery.html

  35. 35.

    European Commission. (2015). EU ETS Handbook

  36. 36.

    European Environment Agency. (2020). Spain – Industrial pollution profile 2017. Retrieved November 18, 2020, from https://www.eea.europa.eu/themes/industry/industrial-pollution/industrial-pollution-country-profiles-2020/spain

  37. 37.

    European Parliament. Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 Establishing a Scheme for Greenhouse Gas Emission Allowance Trading within the Community (2003). Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003L0087

    Google Scholar 

  38. 38.

    Fiehn, A., Kostinek, J., Eckl, M., Klausner, T., Gałkowski, M., Chen, J., Gerbig, C., Röckmann, T., Maazallahi, H., Schmidt, M., Korbeń, P., Neçki, J., Jagoda, P., Wildmann, N., Mallaun, C., Bun, R., Nickl, A.L., Jöckel, P., Fix, A., Roiger, A.: Estimating CH4, CO2 and CO emissions from coal mining and industrial activities in the Upper Silesian Coal Basin using an aircraft-based mass balance approach. Atmos. Chem. Phys. 20(21), 12675–12695 (2020). https://doi.org/10.5194/acp-20-12675-2020

    Article  Google Scholar 

  39. 39.

    Franco-Villoria, M., Ignaccolo, R.: Bootstrap based uncertainty bands for prediction in functional kriging. Spatial Statistics. 21, 130–148 (2017). https://doi.org/10.1016/j.spasta.2017.06.005

    Article  Google Scholar 

  40. 40.

    Gaetan, C., Guyon, X.: Spatial statistics and modeling. Springer, New York (2010). https://doi.org/10.1007/978-0-387-92257-7

    Google Scholar 

  41. 41.

    Galán-Valdivieso, F., Villar-Rubio, E., Huete-Morales, M.-D.: The erratic behaviour of the EU ETS on the path towards consolidation and price stability. International Environmental Agreements: Politics, Law and Economics. 18(5), 689–706 (2018). https://doi.org/10.1007/s10784-018-9411-3

    Article  Google Scholar 

  42. 42.

    Gautier, A. (2020). Carbon control. Retrieved December 1, 2020, from https://earthdata.nasa.gov/learn/sensing-our-planet/carbon-control

  43. 43.

    Government of Spain. Ley 1/2005, de 9 de marzo, por la que se regula el régimen del comercio de derechos de emisión de gases de efecto invernadero (2005). Retrieved from https://www.boe.es/buscar/pdf/2005/BOE-A-2005-3941-consolidado.pdf

  44. 44.

    Gurney, K.R., Liang, J., Patarasuk, R., Song, Y., Huang, J., Roest, G.: The Vulcan version 3.0 high-resolution fossil fuel CO2 emissions for the United States. J. Geophys. Res. Atmos. 125(19), (2020). https://doi.org/10.1029/2020JD032974

  45. 45.

    Haining, R.P., Kerry, R., Oliver, M.A.: Geography, spatial data analysis, and geostatistics: an overview. Geogr. Anal. 42(1), 7–31 (2010). https://doi.org/10.1111/j.1538-4632.2009.00780.x

    Article  Google Scholar 

  46. 46.

    Hengl, T., Heuvelink, G.B.M., Stein, A.: A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma. 120(1-2), 75–93 (2004). https://doi.org/10.1016/j.geoderma.2003.08.018

    Article  Google Scholar 

  47. 47.

    Huete-Morales, M.-D., Quesada-Rubio, J.-M., Navarrete-Alvarez, E., Rosales-Moreno, M.-J., Del-Moral-Avila, M.-J.: Geostatistical analysis of the causes of environmental noise in Spain. Environ. Eng. Manag. J. 13(10), 2507–2515 (2014). https://doi.org/10.30638/eemj.2014.280

    Article  Google Scholar 

  48. 48.

    IPCC. (2019). Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,

  49. 49.

    Ivanova, D., Vita, G., Steen-Olsen, K., Stadler, K., Melo, P.C., Wood, R., Hertwich, E.G.: Mapping the carbon footprint of EU regions. Environ. Res. Lett. 12(5), 054013 (2017). https://doi.org/10.1088/1748-9326/aa6da9

    Article  Google Scholar 

  50. 50.

    Jamaly, M., Kleissl, J.: Spatiotemporal interpolation and forecast of irradiance data using kriging. Sol. Energy. 158(February), 407–423 (2017). https://doi.org/10.1016/j.solener.2017.09.057

    Article  Google Scholar 

  51. 51.

    Jia, J.J., Xu, J.H., Fan, Y.: The impact of verified emissions announcements on the European Union emissions trading scheme: a bilaterally modified dummy variable modelling analysis. Appl. Energy. 173, 567–577 (2016). https://doi.org/10.1016/j.apenergy.2016.04.027

    Article  Google Scholar 

  52. 52.

    Keshtegar, B., Mert, C., Kisi, O.: Comparison of four heuristic regression techniques in solar radiation modeling: kriging method vs RSM, MARS and M5 model tree. Renew. Sust. Energ. Rev. 81(February 2017), 330–341 (2018). https://doi.org/10.1016/j.rser.2017.07.054

    Article  Google Scholar 

  53. 53.

    Krige, D.: A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 52(6), 119–139 (1951)

    Google Scholar 

  54. 54.

    Kwon, H., Choi, S.: A trended kriging model with R2 indicator and application to design optimization. Aerosp. Sci. Technol. 43, 111–125 (2015). https://doi.org/10.1016/j.ast.2015.02.021

    Article  Google Scholar 

  55. 55.

    Lepone, A., Rahman, R. T., & Yang, J.-Y. (2011). The impact of European Union Emissions Trading Scheme (EU ETS) National Allocation Plans (NAP) on carbon markets, 2, 71–90. https://doi.org/10.4236/lce.2011.22011

  56. 56.

    Levy, I., Broday, D.M.: Improving modeled air pollution concentration maps by residual interpolation. Sci. Total Environ. 598, 780–788 (2017). https://doi.org/10.1016/j.scitotenv.2017.04.117

    Article  Google Scholar 

  57. 57.

    Li, L., Chen, C., Xie, S., Huang, C., Cheng, Z., Wang, H., Wang, Y., Huang, H., Lu, J., Dhakal, S.: Energy demand and carbon emissions under different development scenarios for Shanghai, China. Energy Policy. 38(9), 4797–4807 (2010). https://doi.org/10.1016/j.enpol.2009.08.048

    Article  Google Scholar 

  58. 58.

    Lu, H., Liu, G.: Spatial effects of carbon dioxide emissions from residential energy consumption: a county-level study using enhanced nocturnal lighting. Appl. Energy. 131, 297–306 (2014). https://doi.org/10.1016/j.apenergy.2014.06.036

    Article  Google Scholar 

  59. 59.

    Marchant, B.P., Lark, R.M.: Robust estimation of the variogram by residual maximum likelihood. Geoderma. 140(1–2), 62–72 (2007). https://doi.org/10.1016/j.geoderma.2007.03.005

    Article  Google Scholar 

  60. 60.

    Martínez, W.A., Melo, C.E., Melo, O.O.: Median polish kriging for space – time analysis of precipitation. Spatial Statistics. 19, 1–20 (2017). https://doi.org/10.1016/j.spasta.2016.10.003

    Article  Google Scholar 

  61. 61.

    McLeod, L., Bharadwaj, L., Epp, T., Waldner, C.: Use of principal components analysis and kriging to predict groundwater-sourced rural drinking water quality in Saskatchewan. Int. J. Environ. Res. Public Health. 14(9), 1065 (2017). https://doi.org/10.3390/ijerph14091065

    Article  Google Scholar 

  62. 62.

    Montero, J.M., Fernández-Avilés, G.: Functional kriging prediction of pollution series: the geostatistical alternative for spatially-fixed data. Estudios de Economía Aplicada. 33(1), 145–174 (2015)

    Google Scholar 

  63. 63.

    Moyeed, R.A., Papritz, A.: An empirical comparison of kriging methods for nonlinear spatial point prediction 1. Math. Geol. 34(4), 365–386 (2002)

    Article  Google Scholar 

  64. 64.

    Oliver, M. A. (2010). The variogram and kriging. In Handbook of Applied Spatial Analysis. Software tools, methods and applications (pp. 319–352). Berlin: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-03647-7_17

  65. 65.

    Oliver, M.A., Webster, R.: A tutorial guide to geostatistics: computing and modelling variograms and kriging. Catena. 113, 56–69 (2014). https://doi.org/10.1016/j.catena.2013.09.006

    Article  Google Scholar 

  66. 66.

    Pardo-Igúzquiza, E.: Maximum likelihood estimation of spatial covariance parameters. Math. Geol. 30(1), 95–108 (1998). https://doi.org/10.1023/A:1021765405952

    Article  Google Scholar 

  67. 67.

    Popova, O.H., Small, M.J., McCoy, S.T., Thomas, A.C., Rose, S., Karimi, B., Carter, K., Goodman, A.: Spatial stochastic modeling of sedimentary formations to assess CO2storage potential. Environ. Sci. Technol. 48(11), 6247–6255 (2014). https://doi.org/10.1021/es501931r

    Article  Google Scholar 

  68. 68.

    Przybysz, R., Bunch, M.: Exploring spatial patterns of sudden cardiac arrests in the city of Toronto using Poisson kriging and Hot Spot analyses. PLoS One. 12(7), e0180721 (2017). https://doi.org/10.1371/journal.pone.0180721

    Article  Google Scholar 

  69. 69.

    R-Project. (2019). The R-project for statistical computing. Retrieved from http://www.r-project.org/

  70. 70.

    Rao, V.K., Narayana, A.C.: Application of nonlinear geostatistical indicator kriging in lithological categorization of an iron ore deposit. Curr. Sci. 108(3), 413–422 (2015)

    Google Scholar 

  71. 71.

    Ross, C.W., Grunwald, S., Myers, D.B.: Spatiotemporal modeling of soil organic carbon stocks across a subtropical region. Sci. Total Environ. 461–462, 149–157 (2013). https://doi.org/10.1016/j.scitotenv.2013.04.070

    Article  Google Scholar 

  72. 72.

    Schabenberger, O., Gotway, C.A.: Statistical methods for spatial data analysis. Chapman and Hall/CRC. (2005). https://doi.org/10.1201/9781315275086

  73. 73.

    Schlather, M.: Introduction to Positive Definite Functions and to Unconditional Simulation of Random Fields (Technical Report ST-99-10). Lancaster (1999)

  74. 74.

    Schmidt, P.S.S., Werner, T.: The Informational Contents of Announcements on Verified Emissions in the EU ETS-an Empirical Investigation Using a Multi-Country Event Study Approach, 1–24 (2011). https://doi.org/10.5167/uzh-57092

    Google Scholar 

  75. 75.

    Shad, R., Saadi, M., Shad, A.: Predicting air pollution using fuzzy genetic linear membership kriging in GIS. Comput. Environ. Urban. Syst. 33(6), 472–481 (2009). https://doi.org/10.1016/j.compenvurbsys.2009.10.004

    Article  Google Scholar 

  76. 76.

    Shi, G. (2014). Kriging. In Data Mining and Knowledge Discovery for Geoscientists (pp. 238–274). Elsevier. https://doi.org/10.1016/B978-0-12-410437-2.00008-4

  77. 77.

    Shtiliyanova, A., Bellocchi, G., Borras, D., Eza, U., Martin, R., Carrère, P.: Kriging-based approach to predict missing air temperature data. Comput. Electron. Agric. 142(October), 440–449 (2017). https://doi.org/10.1016/j.compag.2017.09.033

    Article  Google Scholar 

  78. 78.

    Sila, A., Pokhariyal, G., Shepherd, K.: Evaluating regression-kriging for mid-infrared spectroscopy prediction of soil properties in western Kenya. Geoderma Regional. 10(February), 39–47 (2017). https://doi.org/10.1016/j.geodrs.2017.04.003

    Article  Google Scholar 

  79. 79.

    Smith, K.R., Jerrett, M., Anderson, H.R., Burnett, R.T., Stone, V., Derwent, R., Atkinson, R.W., Cohen, A., Shonkoff, S.B., Krewski, D., Pope III, C.A., Thun, M.J., Thurston, G.: Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants. The Lancet. Elsevier. 374(9707), 2091–2103 (2009). https://doi.org/10.1016/S0140-6736(09)61716-5

    Article  Google Scholar 

  80. 80.

    Spanish Climate Change Office. (2017). Informe de aplicación del año 2016. Instalaciones afectadas por la Ley 1/2005

  81. 81.

    Spanish Electricity Grid. (2017). Autonomous Community Statistical Series. Annual indicators

    Google Scholar 

  82. 82.

    Spanish National Institute of Statistics. (2017). Continuous Household Survey. Retrieved from www.ine.es

  83. 83.

    Spanish National Institute of Statistics: España en cifras. 2017 (2017) Retrieved from www.ine.es

  84. 84.

    Spanish National Institute of Statistics. (2017). Spanish Regional Accounts. Retrieved from www.ine.es

  85. 85.

    Statista. (2020). Spain: Carbon dioxide (CO2) emissions 2000–2019. Retrieved November 18, 2020, from https://www.statista.com/statistics/449821/co2-emissions-spain/

  86. 86.

    Sun, M., Wang, Y., Shi, L., Klemeš, J.J.: Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: a systematic review and meta-analysis. Renew Sust Energy Rev. Elsevier Ltd. 92, 823–833 (2018). https://doi.org/10.1016/j.rser.2018.04.036

    Article  Google Scholar 

  87. 87.

    Tobler, W.R.: A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46, 234 (1970). https://doi.org/10.2307/143141

    Article  Google Scholar 

  88. 88.

    Tonkin, M.J., Kennel, J., Huber, W., Lambie, J.M.: Multi-event universal kriging (MEUK). Adv. Water Resour. 87, 92–105 (2016). https://doi.org/10.1016/j.advwatres.2015.11.001

    Article  Google Scholar 

  89. 89.

    Wackernagel, H.: Multivariate Geostatistics: an Introduction with Applications. Springer (2003)

  90. 90.

    Wang, J., Cai, B., Zhang, L., Cao, D., Liu, L., Zhou, Y., et al.: High Resolution Carbon Dioxide Emission Gridded Data for China Derived from Point Sources (2014). https://doi.org/10.1021/es405369r

    Google Scholar 

  91. 91.

    Webster, R., Oliver, M.A.: Geostatistics for Environmental Scientists. John Wiley & Sons (2007)

  92. 92.

    Webster, R., Welham, S.J., Potts, J.M., Oliver, M.A.: Estimating the spatial scales of regionalized variables by nested sampling, hierarchical analysis of variance and residual maximum likelihood. Comput. Geosci. 32(9), 1320–1333 (2006). https://doi.org/10.1016/j.cageo.2005.12.002

    Article  Google Scholar 

  93. 93.

    Wiedmann, T. O., Chen, G., & Barrett, J. (2016, August 1). The concept of city carbon maps: a case study of Melbourne, Australia. Journal of Industrial Ecology. Blackwell Publishing. https://doi.org/10.1111/jiec.12346

  94. 94.

    Wu, P., Song, Y., Zhu, J., Chang, R.: Analyzing the influence factors of the carbon emissions from China’s building and construction industry from 2000 to 2015. J. Clean. Prod. 221, 552–566 (2019). https://doi.org/10.1016/j.jclepro.2019.02.200

    Article  Google Scholar 

  95. 95.

    Xiao, Y., Gu, X., Yin, S., Shao, J., Cui, Y., Zhang, Q., Niu, Y.: Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, Northwest China. SpringerPlus. 5(1), 425 (2016). https://doi.org/10.1186/s40064-016-2073-0

    Article  Google Scholar 

  96. 96.

    Ye, H., Huang, W., Huang, S., Huang, Y., Zhang, S., Dong, Y., Chen, P.: Effects of different sampling densities on geographically weighted regression kriging for predicting soil organic carbon. Spatial Statistics. 20, 76–91 (2017). https://doi.org/10.1016/j.spasta.2017.02.001

    Article  Google Scholar 

  97. 97.

    Yi, Y.K.: Adaptation of kriging in daylight modeling for energy simulation. Energy and Buildings. 111, 479–496 (2016). https://doi.org/10.1016/j.enbuild.2015.11.036

    Article  Google Scholar 

  98. 98.

    Yuan, J.H., Kang, J.G., Zhao, C.H., Hu, Z.G.: Energy consumption and economic growth: evidence from China at both aggregated and disaggregated levels. Energy Econ. 30(6), 3077–3094 (2008). https://doi.org/10.1016/j.eneco.2008.03.007

    Article  Google Scholar 

  99. 99.

    Zimmerman, D.L., Zimmerman, M.B.: A comparison of spatial semivariogram estimators and corresponding ordinary kriging predictors. Technometrics. 33(1), 77 (1991). https://doi.org/10.2307/1269009

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Subdirectorate General for Emissions Trading and Flexibility Mechanisms, within the Spanish Climate Change Office (OECC), a part of the Ministry of Agriculture and Fisheries, Food and the Environment, for providing the data needed for this study, in the appropriate format for econometric analysis.

Funding

This contribution was carried out with funding and support from the Social-Labour Statistics and Demography project (30.BB.11.1101), being conducted at the Faculty of Labour Sciences (University of Granada).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elena Villar-Rubio.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 4 Categories of activities and gases included in the scope of the Law 1/2005, of March 9, which regulates the regime for trading greenhouse gas emission rights
Table 5 Environmental studies using kriging-based methods

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huete-Morales, M.D., Villar-Rubio, E. & Galán-Valdivieso, F. Spatial Distribution of CO2 Verified Emissions: a Kriging-Based Approach. Emiss. Control Sci. Technol. 7, 63–77 (2021). https://doi.org/10.1007/s40825-021-00185-3

Download citation

Keywords

  • Carbon dioxide
  • EU ETS
  • Kriging
  • Verified emissions
  • Spatial statistics