Application of a Diffusion Charger to Quantify Real-Time Particle Emissions from Light-Duty Vehicles: a Comparison Study with a Particle Size Spectrometer

Abstract

Measurement methods for vehicle-emitted particulate matter (PM) have evolved as vehicle emission standards have become more stringent. For example, the filter-based gravimetric method has been demonstrated feasible to measure emissions at levels below 1 mg/mi from light-duty vehicles. However, while regulatory methods and instruments for measuring PM emissions are rigorous and accurate, there is a need to continue evaluating alternatives for use in the laboratory, as well as simple and robust instruments for screening that can be used for detecting high emissions on the roadside and evaluating the effectiveness of repairs in support of inspection and maintenance (I/M) programs. This study investigated the performance of an aerosol diffusion charger (TSI Electrical Aerosol Detector) by comparing its raw signal (aerosol active surface area) and its conversion to particle number and mass emission rates with those reported or calculated from a multi-channel electrometer-based particle size spectrometer (TSI Engine Exhaust Particle Sizer) and various condensation particle counters (CPCs). Four light-duty vehicles were tested, including gasoline port fuel injection (PFI), gasoline direct injection (GDI), and a diesel vehicle equipped with a diesel particulate filter (DPF). Results show that the diffusion charger was responsive over a wide particle size and concentration range, exhibiting sufficient signal-to-noise ratio during transient measurements of the gasoline PFI vehicle and light-duty diesel vehicle with a DPF (both certified below 1 mg/mi). High sensitivity at low concentrations suggests that the diffusion charger may have potential for identifying failures of emission control systems at lower concentrations than methods designed to report real-time suspended particle number or mass metrics directly. Systematic and fundamental data from our study underscore the challenge with “black box” equipment calibrated to calculate total particle number and mass from surface area measurements based on constant unimodal fit parameters. Future work could focus on the applications from deploying active surface area monitors at the roadside or for using surface area measurements to evaluate repair effective in support of I/M programs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Apte, J.S., Brauer, M., Cohen, A.J., Ezzati, M., Pope III, C.A.: Ambient PM2.5 reduces global and regional life expectancy. Environmental Science & Technology Letters. 5(9), 546–551 (2018)

    Article  Google Scholar 

  2. 2.

    Robinson, A.L., Donahue, N.M., Shrivastava, M.K., Weitkamp, E.A., Sage, A.M., Grieshop, A.P., Lane, T.E., Pierce, J.R., Pandis, S.N.: Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science. 315(5816), 1259–1262 (2007)

    Article  Google Scholar 

  3. 3.

    CARB (1998). Particulate Emissions from Diesel-Fueled Engines as a Toxic Air Contaminant

  4. 4.

    IARC: Diesel Engine Exhaust Carcinogenic. Lyon, France (2012)

    Google Scholar 

  5. 5.

    CARB (2012). Development of Particulate Matter Mass Standards for Future Light-Duty Vehicles, in LEV III PM, Technical Support Document

  6. 6.

    EPA, U. (2013). EPA Proposes Tier 3 Tailpipe and Evaporative Emission and Vehicle Fuel Standards, Office of Transportation and Air Quality

  7. 7.

    Yang, J., Pham, L., Johnson, K. C., Durbin, T. D., Karavalakis, G., Kittelson, D., Jung, H. (2020). Impacts of exhaust transfer system contamination on particulate matter measurements. Emission Control Science and Technology:1–15

  8. 8.

    Swanson, J., Pham, L., Xue, J., Durbin, T., Russell, R., Miller, W., Kittelson, D., Jung, H., Johnson, K.: Uncertainty in gravimetric analysis required for LEV III light-duty vehicle PM emission measurements. SAE Int. J. Engines. 11(3), 349–362 (2018)

    Article  Google Scholar 

  9. 9.

    Bischof, O.F.: Recent developments in the measurement of low particulate emissions from mobile sources: a review of particle number legislations. Emission Control Science and Technology. 1(2), 203–212 (2015)

    Article  Google Scholar 

  10. 10.

    Herner, J. D., Robertson, W. H., Ayala, A. (2007). Investigation of Ultrafine Particle Number Measurements from a Clean Diesel Truck Using the European PMP Protocol, SAE Technical Paper

  11. 11.

    Zheng, Z., Durbin, T.D., Karavalakis, G., Johnson, K.C., Chaudhary, A., Cocker III, D.R., Herner, J.D., Robertson, W.H., Huai, T., Ayala, A.: Nature of sub-23-nm particles downstream of the European particle measurement programme (PMP)-compliant system: a real-time data perspective. Aerosol Sci. Technol. 46(8), 886–896 (2012)

    Article  Google Scholar 

  12. 12.

    Zheng, Z., Johnson, K.C., Liu, Z., Durbin, T.D., Hu, S., Huai, T., Kittelson, D.B., Jung, H.S.: Investigation of solid particle number measurement: existence and nature of sub-23 nm particles under PMP methodology. J. Aerosol Sci. 42(12), 883–897 (2011)

  13. 13.

    Bainschab, M., Bergmann, A., Karjalainen, P., Keskinen, J., Andersson, J., Mamakos, A., Giechaskiel, B., Haisch, C., Piacenza, O., Ntziachristos, L. (2017). Extending Particle Number Limits to below 23 nm: First Results of the H2020 DownToTen Project, in 2017 ETH-Conference on Combustion Generated Nanoparticles, 3644–3652

  14. 14.

    Melas, A., Koidi, V., Deloglou, D., Daskalos, E., Zarvalis, D., Papaioannou, E., Konstandopoulos, A.: Development and evaluation of a catalytic stripper for the measurement of solid ultrafine particle emissions from internal combustion engines. Aerosol Sci. Technol. 54(6), 704–717 (2020)

    Article  Google Scholar 

  15. 15.

    Lao, C.T., Akroyd, J., Eaves, N., Smith, A., Morgan, N., Bhave, A., Kraft, M.: Modelling particle mass and particle number emissions during the active regeneration of diesel particulate filters. Proc. Combust. Inst. 37(4), 4831–4838 (2019)

    Article  Google Scholar 

  16. 16.

    Kirchner, U., Vogt, R., Maricq, M. (2010). Investigation of EURO-5/6 Level Particle Number Emissions of European Diesel Light Duty Vehicles, SAE Technical Paper

  17. 17.

    Maricq, M.M., Szente, J., Loos, M., Vogt, R.: Motor vehicle PM emissions measurement at LEV III levels. SAE Int. J. Engines. 4(1), 597–609 (2011)

    Article  Google Scholar 

  18. 18.

    Chang, M.-C.O., Shields, J.E.: Evaluation of solid particle number and black carbon for very low particulate matter emissions standards in light-duty vehicles. J. Air Waste Manage. Assoc. 67(6), 677–693 (2017)

    Article  Google Scholar 

  19. 19.

    Maricq, M.M., Szente, J.J., Harwell, A.L., Loos, M.J.: Impact of aggressive drive cycles on motor vehicle exhaust PM emissions. J. Aerosol Sci. 113, 1–11 (2017)

    Article  Google Scholar 

  20. 20.

    CARB (2015). An Update on the Measurement of PM Emissions at LEV III Levels

  21. 21.

    Pham, L., Yang, J., Johnson, K., Durbin, T., Karavalakis, G., Miller, W., Kittelson, D., Jung, H.S.: Evaluation of partial flow dilution systems for very low PM mass measurements. Emission Control Science and Technology. 4(4), 247–259 (2018)

    Article  Google Scholar 

  22. 22.

    Xue, J., Johnson, K., Durbin, T., Russell, R., Pham, L., Miller, W., Swanson, J., Kittelson, D., Jung, H.: Very low particle matter mass measurements from light-duty vehicles. J. Aerosol Sci. 117, 1–10 (2018)

    Article  Google Scholar 

  23. 23.

    Pandis, S.N., Baltensperger, U., Wolfenbarger, J.K., Seinfeld, J.H.: Inversion of aerosol data from the epiphaniometer. J. Aerosol Sci. 22(4), 417–428 (1991)

    Article  Google Scholar 

  24. 24.

    Keller, A., Fierz, M., Siegmann, K., Siegmann, H., Filippov, A.: Surface science with nanosized particles in a carrier gas. J. Vac. Sci. Technol. A. 19(1), 1–8 (2001)

    Article  Google Scholar 

  25. 25.

    Wilson, W.E., Stanek, J., Han, H.-S., Johnson, T., Sakurai, H., Pui, D.Y., Chen, D.-R., Duthie, S.: Use of the electrical aerosol detector as an indicator of the surface area of fine particles deposited in the lung. J. Air Waste Manage. Assoc. 57(2), 211–220 (2007)

    Article  Google Scholar 

  26. 26.

    Xue, J., Li, Y., Quiros, D., Hu, S., Huai, T., Ayala, A., Jung, H.S.: Investigation of alternative metrics to quantify PM mass emissions from light duty vehicles. J. Aerosol Sci. 113, 85–94 (2017)

    Article  Google Scholar 

  27. 27.

    Pegasor (2018). White Paper PPS-M

  28. 28.

    Amanatidis, S., Ntziachristos, L., Samaras, Z., Janka, K., Tikkanen, J. (2013). Applicability of the Pegasor Particle Sensor to Measure Particle Number, Mass and PM Emissions, SAE Technical Paper

  29. 29.

    Amanatidis, S., Maricq, M.M., Ntziachristos, L., Samaras, Z.: Measuring number, mass, and size of exhaust particles with diffusion chargers: the dual Pegasor particle sensor. J. Aerosol Sci. 92, 1–15 (2016)

    Article  Google Scholar 

  30. 30.

    Whitby, K. T. (1967). Sonic jet ionizer, Google Patents

  31. 31.

    Medved, A., Dorman, F., Kaufman, S., Pöcher, A.: A new corona-based charger for aerosol particles. J. Aerosol Sci. 31, S616–S617 (2000)

    Article  Google Scholar 

  32. 32.

    Mirme, S., Mirme, A.: The mathematical principles and design of the NAIS—a spectrometer for the measurement of cluster ion and nanometer aerosol size distributions. Atmospheric Measurement Techniques. 6(4), 1061–1071 (2013)

    Article  Google Scholar 

  33. 33.

    Li, Y., Xue, J., Johnson, K., Durbin, T., Villela, M., Pham, L., Hosseini, S., Zheng, Z., Short, D., Karavalakis, G. (2014). Determination of Suspended Exhaust PM Mass for Light-Duty Vehicles, SAE Technical Paper

  34. 34.

    Pham, L., Jung, H.S.: Alternative metrics for spatially and temporally resolved ambient particle monitoring. J. Aerosol Sci. 102, 96–104 (2016)

    Article  Google Scholar 

  35. 35.

    Hatch, T., Choate, S.P.: Statistical description of the size properties of non uniform particulate substances. Journal of the Franklin Institute. 207(3), 369–387 (1929)

    Article  Google Scholar 

  36. 36.

    Steppan, J., Henderson, B., Johnson, K., Khan, M. Y., Diller, T., Hall, M., Lourdhusamy, A., Allmendinger, K., Matthews, R. D. (2011). Comparison of an on-Board, Real-Time Electronic PM Sensor with Laboratory Instruments Using a 2009 Heavy-Duty Diesel Vehicle, SAE Technical Paper

  37. 37.

    Zervas, E., Dorlhène, P.: Comparison of exhaust particle number measured by EEPS, CPC, and ELPI. Aerosol Sci. Technol. 40(11), 977–984 (2006)

    Article  Google Scholar 

  38. 38.

    Swanson, J.J., Kittelson, D.B., Watts, W.F., Gladis, D.D., Twigg, M.V.: Influence of storage and release on particle emissions from new and used CRTs. Atmos. Environ. 43(26), 3998–4004 (2009)

    Article  Google Scholar 

  39. 39.

    Giechaskiel, B., Maricq, M., Ntziachristos, L., Dardiotis, C., Wang, X., Axmann, H., Bergmann, A., Schindler, W.: Review of motor vehicle particulate emissions sampling and measurement: from smoke and filter mass to particle number. J. Aerosol Sci. 67, 48–86 (2014)

    Article  Google Scholar 

  40. 40.

    Maricq, M.M., Szente, J.J., Harwell, A.L., Loos, M.J.: How well can aerosol instruments measure particulate mass and solid particle number in engine exhaust? Aerosol Sci. Technol. 50(6), 605–614 (2016)

    Article  Google Scholar 

  41. 41.

    Premnath, V., Khalek, I. A., Morgan, P. (2018). Relationship among Various Particle Characterization Metrics Using GDI Engine Based Light-Duty Vehicles, SAE Technical Paper

  42. 42.

    Quiros, D.C., Zhang, S., Sardar, S., Kamboures, M.A., Eiges, D., Zhang, M., Jung, H.S., Mccarthy, M.J., Chang, M.-C.O., Ayala, A.: Measuring particulate emissions of light duty passenger vehicles using integrated particle size distribution (IPSD). Environmental science & technology. 49(9), 5618–5627 (2015b)

    Article  Google Scholar 

  43. 43.

    Quiros, D.C., Hu, S., Hu, S., Lee, E.S., Sardar, S., Wang, X., Olfert, J.S., Jung, H.S., Zhu, Y., Huai, T.: Particle effective density and mass during steady-state operation of GDI, PFI, and diesel passenger cars. J. Aerosol Sci. 83, 39–54 (2015a)

    Article  Google Scholar 

  44. 44.

    Maricq, M.M., Xu, N.: The effective density and fractal dimension of soot particles from premixed flames and motor vehicle exhaust. J. Aerosol Sci. 35(10), 1251–1274 (2004)

    Article  Google Scholar 

  45. 45.

    Jung, H., Kittelson, D.B.: Characterization of aerosol surface instruments in transition regime. Aerosol Sci. Technol. 39(9), 902–911 (2005)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heejung Jung.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jung, H., Quiros, D., Li, Y. et al. Application of a Diffusion Charger to Quantify Real-Time Particle Emissions from Light-Duty Vehicles: a Comparison Study with a Particle Size Spectrometer. Emiss. Control Sci. Technol. 7, 41–55 (2021). https://doi.org/10.1007/s40825-020-00179-7

Download citation

Keywords

  • Screening tool
  • High emitter
  • DPF