Kinetic Modelling of Co3O4- and Pd/Co3O4-Catalyzed Wet Lean Methane Combustion


Reaction kinetics of methane combustion is investigated on Co3O4 and Pd/Co3O4 (0.27 wt% Pd) catalysts for a fuel-lean feed. The temperature ranges between 250 and 550 °C in the presence of 5 and 10 vol% water with CH4 concentrations that varied between 1000 and 5000 ppmv. Significant cobalt oxide contribution to the activity of the bimetallic catalyst is observed, especially at higher water concentration and lower temperature (up to 70%). Co3O4 demonstrates first order to CH4, 0 order to H2O and activation energy of 69 kJ/mol. Pd/Co3O4 catalyst shows first order to CH4, negative 0.37 order to H2O and an observed activation energy of 90.7 kJ/mol, which is corrected for water adsorption to 60.6 kJ/mol. The latter is a typical activation energy for Pd/Al2O3 catalyst at similar conditions, indicating that the Co3O4 contribution is not only in performing the methane combustion itself but also in supplying surface oxygen rather than in affecting the activation energy. The kinetic evidence shows that the observed behaviour of Pd/Co3O4 catalyst is not a summation of individual activities of Co3O4 and Pd, but rather the effect of strong metal-support interactions (SMSI).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Li, Z., Hoflund, G.B.: Catalytic oxidation of methane over Pd/Co3O4. React. Kinet. Catal. Lett. 66(2), 367–374 (1999)

    Article  Google Scholar 

  2. 2.

    Zasada, F., Janas, J., Piskorz, W., Gorczyńska, M., Sojka, Z.: Total oxidation of lean methane over cobalt spinel nanocubes controlled by the self-adjusted redox state of the catalyst: experimental and theoretical account for interplay between the Langmuir-Hinshelwood and Mars-van Krevelen mechanisms. ACS Catal. 7, 2853–2867 (2017)

    Article  Google Scholar 

  3. 3.

    Sokolovskii, V.D.: Principles of oxidative catalysis on solid oxides. Catal. Rev. 32, 1–49 (1990)

    Article  Google Scholar 

  4. 4.

    Piskorz, W., Gryboś, J., Sojka, Z., Indyka, P., Zasada, F., Janas, J.: Reactive oxygen species on the (100) facet of cobalt spinel nanocatalyst and their relevance in 16O2 / 18O2 isotopic exchange, de N2O, and de CH4 processes—a theoretical and experimental account. ACS Catal. 5, 6879–6892 (2015)

    Article  Google Scholar 

  5. 5.

    Setiawan, A., Kennedy, E.M., Dlugogorski, B.Z., Adesina, A.A., Stockenhuber, M.: The stability of Co3O4, Fe2O3, Au/Co3O4 and Au/Fe2O3 catalysts in the catalytic combustion of lean methane mixtures in the presence of water. Catal. Today. 258, 276–283 (2015)

    Article  Google Scholar 

  6. 6.

    Hu, L., Peng, Q., Li, Y.: Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 130, 16136–16137 (2008)

    Article  Google Scholar 

  7. 7.

    Hu, W., Lan, J., Guo, Y., Cao, X.-M., Hu, P.: Origin of efficient catalytic combustion of methane over Co3O4(110): active low-coordination lattice oxygen and cooperation of multiple active sites. ACS Catal. 6, 5508–5519 (2016)

    Article  Google Scholar 

  8. 8.

    Choya, A., de Rivas, B., González-Velasco, J.R., Gutiérrez-Ortiz, J.I., López-Fonseca, R.: Oxidation of residual methane from VNG vehicles over Co3O4-based catalysts: comparison among bulk, Al2O3-supported and Ce-doped catalysts. Appl. Catal. B Environ. 237, 844–854 (2018)

    Article  Google Scholar 

  9. 9.

    Teng, F., Chen, M., Li, G., Teng, Y., Xu, T., Hang, Y., Yao, W., Santhanagopalan, S., Meng, D.D., Zhu, Y.: High combustion activity of CH4 and catalluminescence properties of CO oxidation over porous Co3O4 nanorods. Appl. Catal. B Environ. 110, 133–140 (2011)

    Article  Google Scholar 

  10. 10.

    Willis, J.J., Goodman, E.D., Wu, L., Riscoe, A.R., Martins, P., Tassone, C.J., Cargnello, M.: Systematic identification of promoters for methane oxidation catalysts using size- and composition-controlled Pd-based bimetallic nanocrystals. J. Am. Chem. Soc. 139, 11989–11997 (2017)

    Article  Google Scholar 

  11. 11.

    Stefanov, P., Todorova, S., Naydenov, A., Tzaneva, B., Kolev, H., Atanasova, G., Stoyanova, D., Karakirova, Y., Aleksieva, K.: On the development of active and stable Pd-co/γ-Al2O3 catalyst for complete oxidation of methane. Chem. Eng. J. 266, 329–338 (2015)

    Article  Google Scholar 

  12. 12.

    Chlebda, D., Gierada, M., Łojewska, J., Jędrzejczyk, R.J., Jodłowski, P.J.: In situ spectroscopic studies of methane catalytic combustion over co, Ce, and Pd mixed oxides deposited on a steel surface. J. Catal. 350, 1–12 (2017)

    Article  Google Scholar 

  13. 13.

    Ercolino, G., Grzybek, G., Stelmachowski, P., Specchia, S., Kotarba, A., Specchia, V.: Pd/Co3O4-based catalysts prepared by solution combustion synthesis for residual methane oxidation in lean conditions. Catal. Today. 257, 66–71 (2015)

    Article  Google Scholar 

  14. 14.

    Zhao, C., Zhao, Y., Li, S., Sun, Y.: Effect of Pd doping on CH4 reactivity over Co3O4 catalysts from density-functional theory calculations. Cuihua Xuebao/Chinese J. Catal. 38, 813–820 (2017)

    Article  Google Scholar 

  15. 15.

    Hu, L., Peng, Q., Li, Y.: Low-temperature CH4 catalytic combustion over Pd catalyst supported on Co3O4 nanocrystals with well-defined crystal planes. ChemCatChem. 3, 868–874 (2011)

    Article  Google Scholar 

  16. 16.

    Ercolino, G., Stelmachowski, P., Grzybek, G., Kotarba, A., Specchia, S.: Optimization of Pd catalysts supported on Co3O4 for low-temperature lean combustion of residual methane. Appl. Catal. B Environ. 206, 712–725 (2017)

    Article  Google Scholar 

  17. 17.

    Boreskov, G.K., Muzykantov, V.S.: Investigation of oxide-type oxidation catalysts by reactions of oxygen isotopic exchange. Ann. N. Y. Acad. Sci. 213, 137–170 (1973)

    Article  Google Scholar 

  18. 18.

    Schwartz, W.R., Pfefferle, L.D.: Combustion of methane over palladium-based catalysts: support interactions. J. Phys. Chem. C. 116, 8571–8578 (2012)

    Article  Google Scholar 

  19. 19.

    Schwartz, W.R., Ciuparu, D., Pfefferle, L.D.: Combustion of methane over palladium-based catalysts: catalytic deactivation and role of the support. J. Phys. Chem. C. 116, 8587–8593 (2012)

    Article  Google Scholar 

  20. 20.

    Nassiri, H., Lee, K.-E., Hu, Y., Hayes, R.E., Scott, R.W.J., Semagina, N.: Water shifts PdO-catalyzed lean methane combustion to Pt-catalyzed rich combustion in Pd-Pt catalysts: in situ X-ray absorption spectroscopy. J. Catal. 352, 649–656 (2017)

    Article  Google Scholar 

  21. 21.

    Abbasi, R., Wu, L., Wanke, S.E., Hayes, R.E.: Kinetics of methane combustion over Pt and Pt-Pd catalysts. Chem. Eng. Res. Des. 90, 1930–1942 (2012)

    Article  Google Scholar 

  22. 22.

    Patterson, A.: The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)

    Article  Google Scholar 

  23. 23.

    Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriquez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem.; aop. (2015).

  24. 24.

    Zhu, G., Han, J., Zemlyanov, D.Y., Ribeiro, F.H.: The turnover rate for the catalytic combustion of methane over palladium is not sensitive to the structure of the catalyst. J. Am. Chem. Soc. 126, 9896–9897 (2004)

    Article  Google Scholar 

  25. 25.

    Ribeiro, F.H., Chow, M., Dalla Betta, R.A.: Kinetics of the complete oxidation of methane over supported palladium catalysts. J. Catal. 146, 537–544 (1994)

    Article  Google Scholar 

  26. 26.

    Lewis, F.B., Saunders, N.H.: The thermal conductivity of NiO and CoO at the Neel temperature. J. Phys. C: Solid State Phys. 6, 2525–2532 (1973)

    Article  Google Scholar 

  27. 27.

    Gierman, H.: Design of laboratory hydrotreating reactors. Scaling down of trickle-flow reactors. Appl. Catal. 43, 277–286 (1998)

    Article  Google Scholar 

  28. 28.

    Zasada, F., Piskorz, W., Cristol, S., Paul, J.-F., Kotarba, A., Sojka, Z.: Periodic density functional theory and atomistic thermodynamic studies of cobalt spinel nanocrystals in wet environment: molecular interpretation of water adsorption equilibria. J. Phys. Chem. C. 114, 22245–22253 (2010)

    Article  Google Scholar 

  29. 29.

    Fujimoto, K.-I., Ribeiro, F.H., Avalos-Borja, M., Iglesia, E.: Structure and reactivity of PdOx/ZrO2 catalysts for methane oxidation at low temperatures. J. Catal. 179, 431–442 (1998)

    Article  Google Scholar 

  30. 30.

    Alyani, M., Smith, K.J.: kinetic analysis of the inhibition of CH4 oxidation by H2O on PdO/Al2O3 and CeO2/PdO/Al2O3 catalysts. Ind. Eng. Chem. Res. 55, 8309–8318 (2016)

    Article  Google Scholar 

Download references


We thank Dr. Jing Shen for performing the TEM and CO chemisorption analyses.


Financial support was from Natural Sciences and Engineering Research Council of Canada (NSERC Strategic grant STPGP 478979-15).

Author information



Corresponding author

Correspondence to Robert E. Hayes.

Ethics declarations


Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 210 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nasr, S., Semagina, N. & Hayes, R.E. Kinetic Modelling of Co3O4- and Pd/Co3O4-Catalyzed Wet Lean Methane Combustion. Emiss. Control Sci. Technol. 6, 269–278 (2020).

Download citation


  • Methane combustion
  • Cobalt oxide
  • Water effect
  • Reaction kinetics
  • Strong metal-support interactions