Skip to main content
Log in

Catalytic Carbon Monoxide Oxidation over Potassium-Doped Manganese Dioxide Nanoparticles Synthesized by Spray Drying

  • Special Issue: In Recognition of Professor Wolfgang Grünert's Contributions to the Science and Fundamentals of Selective Catalytic Reduction of NOx
  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

Manganese oxides are promising catalysts for the oxidation of CO as well as the removal of volatile organic compounds from exhaust gases because of their structural versatility and their ability to reversibly change between various oxidation states. MnO2 nanoparticles doped with Na+ or K+ were synthesized by a semi-continuous precipitation method based on spray drying. Specific surface area, crystallite size, and morphology of these particles were predominantly determined by the spray-drying parameters controlling the quenching of the crystallite growth, whereas thermal stability, reducibility, and phase composition were strongly influenced by the alkali ion doping. Pure α-MnO2 was obtained by K+ doping under alkaline reaction conditions followed by calcination at 450 °C, which revealed a superior catalytic activity in comparison to X-ray amorphous or Mn2O3-containing samples. Thus, the phase composition is identified as a key factor for the catalytic activity of manganese oxides, and it was possible to achieve a similar activation of a K+-doped X-ray amorphous catalyst under reaction conditions resulting in the formation of crystalline α-MnO2. The beneficial effect of K+ doping on the catalytic activity of MnO2 is mainly associated with the stabilizing effect of K+ on the α-MnO2 tunnel structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bürgi, T., Bieri, M.: Time-resolved in situ ATR spectroscopy of 2-propanol oxidation over Pd/Al2O3. Evidence for 2-propoxide intermediate. J. Phys. Chem. B. 108(35), 13364–13369 (2004). https://doi.org/10.1021/jp048187u

    Article  Google Scholar 

  2. Su, E.C., Montreuil, C.N., Rothschild, W.G.: Oxygen storage capacity of monolith three-way catalysts. Appl. Catal. 17(1), 75–86 (1985). https://doi.org/10.1016/S0166-9834(00)82704-9

    Article  Google Scholar 

  3. Liu, K., Wang, A., Zhang, T.: Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts. ACS Catal. 2(6), 1165–1178 (2012). https://doi.org/10.1021/cs200418w

    Article  Google Scholar 

  4. Wang, J., Chen, H., Hu, Z., Yao, M., Li, Y.: A review on the Pd-based three-way catalyst. Catal. Rev. 57(1), 79–144 (2014). https://doi.org/10.1080/01614940.2014.977059

    Article  Google Scholar 

  5. Nibbelke, R.H., Nievergeld, A.J.L., Hoebink, J.H.B.J., Marin, G.B.: Development of a transient kinetic model for the CO oxidation by O2 over a Pt/Rh/CeO2/γ-Al2O3 three-way catalyst. Appl. Catal. B Environ. 19(3-4), 245–259 (1998). https://doi.org/10.1016/S0926-3373(98)00076-9

    Article  Google Scholar 

  6. Chatterjee, D., Deutschmann, O., Warnatz, J.: Detailed surface reaction mechanism in a three-way catalyst. Faraday Disc. 119(1), 371–384 (2001). https://doi.org/10.1039/B101968F

    Article  Google Scholar 

  7. Hedjazi, K., Zhang, R., Cui, R., Liu, N., Chen, B.: Synthesis of TiO2 with diverse morphologies as supports of manganese catalysts for CO oxidation. Appl. Petrochem. Res. 6(1), 89–96 (2016). https://doi.org/10.1007/s13203-015-0141-y

    Article  Google Scholar 

  8. Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z., Han, Y.-F.: Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts. Catal. Today. 131(1-4), 477–482 (2008). https://doi.org/10.1016/j.cattod.2007.10.061

    Article  Google Scholar 

  9. Liang, S., Teng, F., Bulgan, G., Zong, R., Zhu, Y.: Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J. Phys. Chem. C. 112(14), 5307–5315 (2008). https://doi.org/10.1021/jp0774995

    Article  Google Scholar 

  10. Wagloehner, S., Nitzer-Noski, M., Kureti, S.: Oxidation of soot on manganese oxide catalysts. Chem. Eng. J. 259, 492–504 (2015). https://doi.org/10.1016/j.cej.2014.08.021

    Article  Google Scholar 

  11. Sihaib, Z., Puleo, F., Garcia-Vargas, J.M., Retailleau, L., Descorme, C., Liotta, L.F., Valverde, J.L., Gil, S., Giroir-Fendler, A.: Manganese oxide-based catalysts for toluene oxidation. Appl. Catal. B Environ. 209, 689–700 (2017). https://doi.org/10.1016/j.apcatb.2017.03.042

    Article  Google Scholar 

  12. Stobbe, E.R., de Boer, B.A., Geus, J.W.: The reduction and oxidation behaviour of manganese oxides. Catal. Today. 47(1-4), 161–167 (1999). https://doi.org/10.1016/S0920-5861(98)00296-X

    Article  Google Scholar 

  13. Liu, Y., Wang, H., Zhu, Y., Wang, X., Liu, X., Li, H., Qian, Y.: Pyrolysis synthesis of magnetic - and -MnO2 nanostructures and the polymorph discrimination. Solid State Commun. 149(37-38), 1514–1518 (2009). https://doi.org/10.1016/j.ssc.2009.06.008

    Article  Google Scholar 

  14. Liu, Y., Wei, J., Tian, Y., Yan, S.: The structure–property relationship of manganese oxides. Highly efficient removal of methyl orange from aqueous solution. J. Mater. Chem. A. 3(37), 19000–19010 (2015). https://doi.org/10.1039/C5TA05507E

    Article  Google Scholar 

  15. Yin, B., Zhang, S., Jiang, H., Qu, F., Wu, X.: Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage. J. Mater. Chem. A. 3(10), 5722–5729 (2015). https://doi.org/10.1039/C4TA06943A

    Article  Google Scholar 

  16. Feng, Q., Yanagisawa, K., Yamasaki, N.: Hydrothermal soft chemical process for synthesis of manganese oxides with tunnel structures. J. Porous. Mater. 5(2), 153–162 (1998). https://doi.org/10.1023/A:1009657724306

    Article  Google Scholar 

  17. Muraoka, Y., Chiba, H., Atou, T., Kikuchi, M., Hiraga, K., Syono, Y., Sugiyama, S., Yamamoto, S., Grenier, J.-C.: Preparation of α-MnO2with an open tunnel. J. Solid State Chem. 144(1), 136–142 (1999). https://doi.org/10.1006/jssc.1999.8133

    Article  Google Scholar 

  18. Frey, K., Iablokov, V., Sáfrán, G., Osán, J., Sajó, I., Szukiewicz, R., Chenakin, S., Kruse, N.: Nanostructured MnOx as highly active catalyst for CO oxidation. J. Catal. 287, 30–36 (2012). https://doi.org/10.1016/j.jcat.2011.11.014

    Article  Google Scholar 

  19. Iablokov, V., Frey, K., Geszti, O., Kruse, N.: High catalytic activity in CO oxidation over MnOx nanocrystals. Catal. Lett. 134(3-4), 210–216 (2010). https://doi.org/10.1007/s10562-009-0244-0

    Article  Google Scholar 

  20. Qian, K., Qian, Z., Hua, Q., Jiang, Z., Huang, W.: Structure–activity relationship of CuO/MnO2 catalysts in CO oxidation. Appl. Surf. Sci. 273, 357–363 (2013). https://doi.org/10.1016/j.apsusc.2013.02.043

    Article  Google Scholar 

  21. Chang, Y.-f., McCarty, J.G.: Novel oxygen storage components for advanced catalysts for emission control in natural gas fueled vehicles. Catal. Today. 30(1-3), 163–170 (1996). https://doi.org/10.1016/0920-5861(95)00007-0

    Article  Google Scholar 

  22. Sing, K.S.W., Williams, R.T.: Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 22(10), 773–782 (2016). https://doi.org/10.1260/0263617053499032

    Article  Google Scholar 

  23. Burgess, C.G.V., Everett, D.H.: The lower closure point in adsorption hysteresis of the capillary condensation type. J. Colloid Interface Sci. 33(4), 611–614 (1970). https://doi.org/10.1016/0021-9797(70)90014-7

    Article  Google Scholar 

  24. Jiang, J., Kucernak, A.: Electrochemical supercapacitor material based on manganese oxide. Preparation and characterization. Electrochim. Acta. 47(15), 2381–2386 (2002). https://doi.org/10.1016/S0013-4686(02)00031-2

    Article  Google Scholar 

  25. Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R., Smart, R.S.C.: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides. Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257(7), 2717–2730 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  Google Scholar 

  26. Ilton, E.S., Post, J.E., Heaney, P.J., Ling, F.T., Kerisit, S.N.: XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 366, 475–485 (2016). https://doi.org/10.1016/j.apsusc.2015.12.159

    Article  Google Scholar 

  27. Wu, Y., Liu, M., Ma, Z., Xing, S.T.: Effect of alkali metal promoters on natural manganese ore catalysts for the complete catalytic oxidation of o-xylene. Catal. Today. 175(1), 196–201 (2011). https://doi.org/10.1016/j.cattod.2011.04.023

    Article  Google Scholar 

  28. Tepluchin, M., Casapu, M., Boubnov, A., Lichtenberg, H., Wang, D., Kureti, S., Grunwaldt, J.-D.: Fe and Mn-based catalysts supported on γ-Al2O3 for CO oxidation under O2-rich conditions. ChemCatChem. 6(6), 1763–1773 (2014). https://doi.org/10.1002/cctc.201301040

    Article  Google Scholar 

  29. Zhou, Y., Wang, Z., Liu, C.: Perspective on CO oxidation over Pd-based catalysts. Catal. Sci. Technol. 5(1), 69–81 (2014). https://doi.org/10.1039/C4CY00983E

    Article  Google Scholar 

  30. Al Soubaihi, R., Saoud, K., Dutta, J.: Critical review of low-temperature CO oxidation and hysteresis phenomenon on heterogeneous catalysts. Catalysts. (2018). https://doi.org/10.3390/catal8120660

    Article  Google Scholar 

Download references

Funding

This research was supported by the German Research Foundation within the Collaborative Research Center SFB 1316/1 “Transient atmospheric pressure plasmas—from plasmas to liquids to solids.” Kevin Ollegott was supported by the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Muhler.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ollegott, K., Peters, N., Antoni, H. et al. Catalytic Carbon Monoxide Oxidation over Potassium-Doped Manganese Dioxide Nanoparticles Synthesized by Spray Drying. Emiss. Control Sci. Technol. 5, 378–391 (2019). https://doi.org/10.1007/s40825-019-00125-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-019-00125-2

Keywords

Navigation