Kim, C.H., Han, H.S.: Status of emission control science and technology in South Korea. Emiss. Control Sci. Technol. 4(1), 1–3 (2018)
Article
Google Scholar
Vassallo, J.E.: Status of emission control science and technology in Argentina. Emiss. Control Sci. Technol. 4(2), 73–77 (2018)
Article
Google Scholar
Wallington, T.J., Lambert, C.K., Ruona, W.C.: Diesel vehicles and sustainable mobility in the U.S. Energy Policy. 54, 47–53 (2013)
Article
Google Scholar
Rexeis, M., Hausberger, S.: Trend of vehicle emission levels until 2020-prognosis based on current vehicle measurements and future emission legislation. Atmos. Environ. 43(31), 4689–4698 (2009)
Article
Google Scholar
European Parliament and the Council of the European Union: Regulation (EC) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information. Off. J. Eur. Union L Ser. 171, 1–16 (2007)
Beatrice, C., Rispoli, N., Di Blasio, G., Konstandopoulos, A.G., Papaioannou, E., Imren, A.: Impact of emerging engine and after-treatment technologies for improved fuel efficiency and emission reduction for the future rail diesel engines. Emiss. Control Sci. Technol. 2(2), 99–112 (2016)
Article
Google Scholar
Fino, D., Russo, N., Saracco, G., Specchia, V.: Catalytic removal of NOx and diesel soot over nanostructured spinel-type oxides. J. Catal. 242(1), 38–47 (2006)
Article
Google Scholar
Li, J., Chang, H., Ma, L., Hao, J., Yang, R.T.: Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—a review. Catal. Today. 175(1), 147–156 (2011)
Article
Google Scholar
Yim, S.D., Kim, S.J., Baik, J.H., Nam, I.S., Mok, Y.S., Lee, J.-H., Cho, B.K., Oh, S.H.: Decomposition of urea into NH3 for the SCR process. Ind. Eng. Chem. Res. 43(16), 4856–4863 (2004)
Article
Google Scholar
Neely, G.D., Sarlashkar, J.V., Mehta, D.: Diesel cold-start emission control research for 2015-2025 LEV III emissions. SAE Int. J. Engines. 6(2), 1009–1020 (2013)
Article
Google Scholar
Cuelenaere, R., Ligterink, N.: Assessment of the strengths and weaknesses of the new real driving emissions (RDE) test procedure. TNO. 2016, R11227 (2016)
Google Scholar
Gu, Y., Epling, W.S.: Passive NOx adsorber: an overview of catalyst performance and reaction chemistry. Appl. Catal., A. 570, 1–14 (2019)
Article
Google Scholar
Lee, J., Theis, J.R., Kyriakidou, E.A.: Vehicle emissions trapping materials: successes, challenges, and the path forward. Appl. Catal., B. 243, 397–414 (2019)
Article
Google Scholar
Cole, J.A.: System for reducing NOx from mobile source engine exhaust. U.S. Patent. 5, 656,244 (1997)
Ryou, Y., Lee, J., Lee, H., Kim, C.H., Kim, D.H.: Low temperature NO adsorption over hydrothermally aged Pd/CeO2 for cold start application. Catal. Today. 307, 93–101 (2018)
Article
Google Scholar
Ji, Y.Y., Bai, S.L., Crocker, M.: Al2O3-based passive NOx adsorbers for low temperature applications. Appl. Catal., B. 170, 283–292 (2015)
Article
Google Scholar
Ji, Y., Xu, D., Bai, S., Graham, U., Crocker, M., Chen, B., Shi, C., Harris, D., Scapens, D., Darab, J.: Pt-and Pd-promoted CeO2–ZrO2 for passive NOx adsorber applications. Ind. Eng. Chem. Res. 56, 111–125 (2016)
Article
Google Scholar
Ji, Y.Y., Xu, D.Y., Crocker, M., Theis, J.R., Lambert, C., Bueno-Lopez, A., Harris, D., Scapens, D.: Mn-based mixed oxides for low temperature NOx adsorber applications. Appl. Catal., A. 567, 90–101 (2018)
Article
Google Scholar
Stakheev, A.Y., Mashkovsky, I.S., Bragina, G.O., Baeva, G.N., Telegina, N.S., Larsen, K.M., Kustov, A.L., Thogersen, J.R.: Mechanism of low-temperature NOx storage for reducing NOx cold start emission. Top. Catal. 59, 931–937 (2016)
Article
Google Scholar
Theis, J.R.: An assessment of Pt and Pd model catalysts for low temperature NOx adsorption. Catal. Today. 267, 93–109 (2016)
Article
Google Scholar
Trovarelli, A.: Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. Sci. Eng. 38(4), 439–520 (1996)
Article
Google Scholar
Yao, H.C., Yao, Y.F.Y.: Ceria in automotive exhaust catalysts: I. Oxygen storage. J. Catal. 86(2), 254–265 (1984)
Article
Google Scholar
Sugiura, M.: Oxygen storage materials for automotive catalysts: ceria-zirconia solid solutions. Catal. Surv. Jpn. 7(1), 77–87 (2003)
Article
Google Scholar
Zheng, Y., Kovarik, L., Engelhard, M.H., Wang, Y., Wang, Y., Gao, F., Szanyi, J.: Low-temperature Pd/zeolite passive NOx adsorbers: structure, performance, and adsorption chemistry. J. Phys. Chem. C. 121(29), 15793–15803 (2017)
Article
Google Scholar
Porta, A., Pellegrinelli, T., Castoldi, L., Matarrese, R., Morandi, S., Dzwigaj, S., Lietti, L.: Low temperature NOx adsorption study on Pd-promoted zeolites. Top. Catal. 61(18-19), 2021–2034 (2018)
Article
Google Scholar
Lee, J., Ryou, Y., Cho, S.J., Lee, H., Kim, C.H., Kim, D.H.: Investigation of the active sites and optimum Pd/Al of Pd/ZSM–5 passive NO adsorbers for the cold-start application: evidence of isolated-Pd species obtained after a high-temperature thermal treatment. Appl. Catal., B. 226, 71–82 (2018)
Article
Google Scholar
Ryou, Y., Lee, J., Lee, H., Kim, C.H., Kim, D.H.: Effect of various activation conditions on the low temperature NO adsorption performance of Pd/SSZ-13 passive NOx adsorber. Catal. Today. 320, 175–180 (2019)
Article
Google Scholar
Mihai, O., Trandafilović, L., Wentworth, T., Torres, F.F., Olsson, L.: The effect of Si/Al ratio for Pd/BEA and Pd/SSZ-13 used as passive NOx adsorbers. Top. Catal. 61(18-19), 2007–2020 (2018)
Article
Google Scholar
Chen, H.Y., Collier, J.E., Liu, D.X., Mantarosie, L., Duran-Martin, D., Novak, V., Rajaram, R.R., Thompsett, D.: Low temperature NO storage of zeolite supported Pd for low temperature diesel engine emission control. Catal. Lett. 146(9), 1706–1711 (2016)
Article
Google Scholar
Ye, Q., Wang, L.F., Yang, R.T.: Activity, propene poisoning resistance and hydrothermal stability of copper exchanged chabazite-like zeolite catalysts for SCR of NO with ammonia in comparison to Cu/ZSM-5. Appl. Catal., A. 427, 24–34 (2012)
Article
Google Scholar
Fickel, D.W., D’Addio, E., Lauterbach, J.A., Lobo, R.F.: The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl. Catal., B. 102(3-4), 441–448 (2011)
Article
Google Scholar
Ryou, Y., Lee, J., Cho, S.J., Lee, H., Kim, C.H., Kim, D.H.: Activation of Pd/SSZ-13 catalyst by hydrothermal aging treatment in passive NO adsorption performance at low temperature for cold start application. Appl. Catal., B. 212, 140–149 (2017)
Article
Google Scholar
Khivantsev, K., Jaegers, N.R., Kovarik, L., Hanson, J.C., Tao, F.F., Tang, Y., Zhang, X., Koleva, I.Z., Aleksandrov, H.A., Vayssilov, G.N., Wang, Y., Gao, F., Szanyi, J.: Achieving atomic dispersion of highly loaded transition metals in small-pore zeolite SSZ-13: high-capacity and high-efficiency low-temperature CO and passive NOx adsorbers. Angew. Chem. Int. Ed. 57(51), 16672–16677 (2018)
Article
Google Scholar
Adelman, B.J., Sachtler, W.M.H.: The effect of zeolitic protons on NOx reduction over Pd/ZSM-5 catalysts. Appl. Catal., B. 14(1-2), 1–11 (1997)
Article
Google Scholar
Kaspar, J., Fornasiero, P., Graziani, M.: Use of CeO2-based oxides in the three-way catalysis. Catal. Today. 50(2), 285–298 (1999)
Article
Google Scholar
Zhou, Y., Lawrence, N.J., Wu, T.-S., Liu, J., Kent, P., Soo, Y.-L., Cheung, C.L.: Pd/CeO2−xNanorod catalysts for CO oxidation: insights into the origin of their regenerative ability at room temperature. ChemCatChem. 6(10), 2937–2946 (2014)
Article
Google Scholar
Luo, M.F., Hou, Z.Y., Yuan, X.X., Zheng, X.M.: Characterization study of CeO2 supported Pd catalyst for low-temperature carbon monoxide oxidation. Catal. Lett. 50(3/4), 205–209 (1998)
Article
Google Scholar
Jeong, H., Bae, J., Han, J.W., Lee, H.: Promoting effects of hydrothermal treatment on the activity and durability of Pd/CeO2 catalysts for CO oxidation. ACS Catal. 7(10), 7097–7105 (2017)
Article
Google Scholar
Stolz, C., Sauvage, A., Massiani, P., Kramer, R.: Solid-state exchange of palladium in zeolite NaX. Appl. Catal., A. 167(1), 113–121 (1998)
Article
Google Scholar
Setiabudi, A., Makkee, M., Moulijn, J.A.: The role of NO2 and O2 in the accelerated combustion of soot in diesel exhaust gases. Appl. Catal., B. 50(3), 185–194 (2004)
Article
Google Scholar
Twigg, M.V.: Progress and future challenges in controlling automotive exhaust gas emissions. Appl. Catal., B. 70(1-4), 2–15 (2007)
Article
Google Scholar
Koebel, M., Elsener, M., Kleemann, M.: Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today. 59(3-4), 335–345 (2000)
Article
Google Scholar
Theis, J.R., Lambert, C.K.: Mechanistic assessment of low temperature NOx adsorbers for cold start NOx control on diesel engines. Catal. Today. 320, 181–195 (2019)
Article
Google Scholar
Filtschew, A., Hess, C.: Unravelling the mechanism of NO and NO 2 storage in ceria: the role of defects and Ce-O surface sites. Appl. Catal., B. 237, 1066–1081 (2018)
Article
Google Scholar
Azambre, B., Zenboury, L., Koch, A., Weber, J.V.: Adsorption and desorption of NOx on commercial ceria-zirconia (CexZr1−xO2) mixed oxides: a combined TGA, TPD-MS, and DRIFTS study. J. Phys. Chem. C. 113(30), 13287–13299 (2009)
Article
Google Scholar
Atribak, I., Azambre, B., Lopez, A.B., Garcia-Garcia, A.: Effect of NOx adsorption/desorption over ceria-zirconia catalysts on the catalytic combustion of model soot. Appl. Catal., B. 92(1-2), 126–137 (2009)
Article
Google Scholar
Azambre, B., Atribak, I., Bueno-López, A., García-García, A.: Probing the surface of ceria−zirconia catalysts using NOx adsorption/desorption: a first step toward the investigation of crystallite heterogeneity. J. Phys. Chem. C. 114(31), 13300–13312 (2010)
Article
Google Scholar
Rico-Pérez, V., Bueno-López, A., Kim, D.J., Ji, Y., Crocker, M.: Pt/Ce x Pr 1−x O 2 ( x = 1 or 0.9) NO x storage–reduction (NSR) catalysts. Appl. Catal., B. 163, 313–322 (2015)
Article
Google Scholar
Hadjiivanov, K.I.: Identification of neutral and charged NxOySurface species by IR spectroscopy. Catal. Rev. Sci. Eng. 42(1-2), 71–144 (2000)
Article
Google Scholar
Philipp, S., Drochner, A., Kunert, J., Vogel, H., Theis, J., Lox, E.S.: Investigation of NO adsorption and NO/O2Co-adsorption on NOx-storage-components by DRIFT-spectroscopy. Top. Catal. 30/31, 235–238 (2004)
Article
Google Scholar
Chakarova, K., Ivanova, E., Hadjiivanov, K., Klissurski, D., Knozinger, H.: Co-ordination chemistry of palladium cations in Pd-H-ZSM-5 as revealed by FTIR spectra of adsorbed and CO-adsorbed probe molecules (CO and NO). PCCP. 6(13), 3702–3709 (2004)
Article
Google Scholar
Lonyi, F., Solt, H.E., Valyon, J., Decolatti, H., Gutierrez, L.B., Miro, E.: An operando DRIFTS study of the active sites and the active intermediates of the NO-SCR reaction by methane over In,H- and In,Pd,H-zeolite catalysts. Appl. Catal., B. 100(1-2), 133–142 (2010)
Article
Google Scholar
Shimizu, K.-i., Okada, F., Nakamura, Y., Satsuma, A., Hattori, T.: Mechanism of NO reduction by CH4 in the presence of O2 over Pd–H–mordenite. J. Catal. 195(1), 151–160 (2000)
Article
Google Scholar
Karjalainen, H., Lassi, U., Rahkamaa-Tolonen, K., Kröger, V., Keiski, R.L.: Thermodynamic equilibrium calculations of sulfur poisoning in Ce–O–S and La–O–S systems. Catal. Today. 100(3-4), 291–295 (2005)
Article
Google Scholar
Kolli, T., Kanerva, T., Lappalainen, P., Huuhtanen, M., Vippola, M., Kinnunen, T., Kallinen, K., Lepistö, T., Lahtinen, J., Keiski, R.L.: The effect of SO2 and H2O on the activity of Pd/CeO2 and Pd/Zr–CeO2 diesel oxidation catalysts. Top. Catal. 52(13-20), 2025–2028 (2009)
Article
Google Scholar
Boaro, M., de Leitenburg, C., Dolcetti, G., Trovarelli, A., Graziani, M.: Oxygen storage behavior of ceria–zirconia-based catalysts in the presence of SO2. Top. Catal. 16(17), 299–306 (2001)
Article
Google Scholar
Luo, T., Gorte, R.J.: Characterization of SO2-poisoned ceria-zirconia mixed oxides. Appl. Catal., B. 53(2), 77–85 (2004)
Article
Google Scholar