Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Oxidative Reactivity of Particulate Samples from Different Diesel Combustion Systems and Its Relation to Structural and Spectral Characteristics of Soot

  • 124 Accesses


This work focuses on the investigation of the relationship between structure and oxidation behavior of particulate matter (PM) emitted from different diesel combustion systems. Commercially available graphite and carbon black materials were also studied as representing the soot with the lowest reactivity. An interpretation of the differences of soot oxidation between these materials is attempted based on the carbon morphology and microstructure; thus, various structural parameters, such as the average particle size, specific surface area, degree of nanostructural organization, average crystallite stacking height, fringe length, fringe tortuosity, and surface functional groups, have been opposed to the reactivity of the carbonaceous materials. Small structural differences were observed in between the carbonaceous samples which seem to directly affect the soot reactivity in terms of oxidation. Particulate matter composition (hydrogen-to-carbon ratio, ash content, and volatile matter) appears to have an impact on the soot reactivity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31


  1. 1.

    Leidenberger, U., Mühlbauer, W., Lorenz, S., Lehmann, S., Brüggemann, D.: Experimental studies on the influence of diesel engine operating parameters on properties of emitted soot particles. Combust. Sci. Technol. 184(1), 1–15 (2012)

  2. 2.

    Mühlbauer, W., Leidenberger, U., Lorenz, S., Brüggemann, D.: Optical studies about the influence of diesel engine operating parameters on the physicochemical properties of emitted soot particles. SAE Int. J. Engines. 6(3), 1866–1876 (2013)

  3. 3.

    Lapuerta, M., Martos, F.J., Herreros, J.M.: Effect of engine operating conditions on the size of primary particles composing diesel soot agglomerates. J. Aerosol Sci. 38(4), 455–466 (2007)

  4. 4.

    Fujimoto, H.: Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon. 41(8), 1585–1592 (2003)

  5. 5.

    Dana, P., Sylvie, B., Sonia, T., Guy, A., Gunter, S.: A morphological investigation of soot produced by the detonation of munitions. Chemosphere. 65, 821–831 (2006)

  6. 6.

    Donnet, J.B., Bansal, R.C., Wang, M.J.: Carbon black: science and technology. Marcel Dekker, New York (1993)

  7. 7.

    Chen, Y., Shah, N., Braun, A., Huggins, F.E., Huffman, G.P.: Electron microscopy investigation of carbonaceous particulate matter generated by combustion of fossil fuels. Energy Fuel. 19(4), 1644–1651 (2005)

  8. 8.

    Vander Wal, R.L., Tomasek, A.J.: Soot nanostructure: dependence upon synthesis condition. Combustion and Flame. 136, 129–141 (2003)

  9. 9.

    Yehliu, K., Vander Wal, R.L., Boehman, A.: Development of an HRTEM image analysis method to quantify carbon nanostructure. Combustion and flame. 158(9), 1837–1851 (2011)

  10. 10.

    Vander Wal, R.L., Tomasek, A.J., Pamphlet, M.I., Taylor, C.D., Thompson, W.K.: Analysis of HRTEM images for carbon nanostructure quantification. J. Nanopart. Res. 6(6), 555–568 (2004)

  11. 11.

    Toth, P., Palotas, A.B., Eddings, E.G., Whitaker, R.T., Lighty, J.S.: A novel framework for the quantitative analysis of high resolution transmission electron micrographs of soot I. Improved measurement of interlayer spacing. Combustion and flame. 160(5), 909–919 (2013)

  12. 12.

    Toth, P., Palotas, A.B., Eddings, E.G., Whitaker, R.T., Lighty, J.S.: A novel framework for the quantitative analysis of high resolution transmission electron micrographs of soot II. Robust multiscale nanostructure quantification. Combustion and flame. 160(5), 920–932 (2013)

  13. 13.

    Soewono A.: Morphology and microstructure of diesel particulate. M.A.Sc Thesis, University of British Columbia, Vancouver, BC. (2008)

  14. 14.

    Al-Qurashi, K., Boehman, A.L.: Impact of exhaust gas recirculation (EGR) on the oxidative reactivity of diesel engine soot. Combust. Flame. 155(4), 675–695 (2008)

  15. 15.

    Tuinstra, F., Koenig, J.L.: Raman spectrum of graphite. Chem. Phys. 53, 1126–1130 (1970)

  16. 16.

    Rosen, H., Novakov, T.: Raman scattering and the characterisation of atmospheric aerosol particles. Nature. 266(5604), 708–710 (1977)

  17. 17.

    Rosen, H., Novakov, T.: Identification of primary particulate carbon and sulfate species by Raman spectroscopy. Atmos. Environ. 12(4), 923–927 (1978)

  18. 18.

    Dippel, B., Heintzenberg, J.: Soot characterization in atmospheric particles from different sources by NIR FT Raman spectroscopy. J. Aerosol Sci. 30, 907–908 (1999)

  19. 19.

    Merah, T.P., Cooney, R.P., Johnson, R.A.: Raman spectra of graphene carbon black. Carbon. 22, 39–42 (1984)

  20. 20.

    Cuesta, A., Dhamelincourt, P., Laureyns, J., Martinez-Alonso, A., Tascon, M.D.J.: Raman microprobe studies on carbon materials. Carbon. 32(8), 1523–1532 (1994)

  21. 21.

    Ivleva, N.P., McKeon, U., Niessner, R., Poschl, U.: Raman microspectroscopic analysis of size-resolved atmospheric aerosol particle samples collected with an ELPI: soot, humic-like substances, and inorganic compounds. Aerosol Sci. Technol. 41(7), 655–671 (2007)

  22. 22.

    Popovicheva, B.O., Kireeva, D.E., Shonija, K.N., Vojtisek-Lom, M., Scharz, J.: FTIR analysis of surface functionalities on particulate matter produced by off-road diesel engines operating on diesel and biofuel. Environ. Sci. Pollut. Res. 22(6), 4534–4544 (2015)

  23. 23.

    Ess, N.M., Ferry, D., Kireeva, E.D., Niessner, R., Ouf, F.X., Ivleva, N.P.: In situ Raman microspectroscopic analysis of soot samples with different organic carbon content: structural changes during heating. Carbon. 105, 572–585 (2016)

  24. 24.

    Moham, N.A., Manoj, B.: Synthesis and characterization of carbon nanospheres from hydrocarbon soot. Int. J. Electrochem. Sci. 7, 9537–9549 (2012)

  25. 25.

    Lapuerta, M., Ballesteros, R., Rodriguez-Fernandez, J.: Thermogravimetric analysis of diesel particulate matter. Meas. Sci. Technol. 18(3), 650–658 (2007)

  26. 26.

    Pahalagedara, L., Sharma, H., Kuo, C.H., Dharmarathna, S., Joshi, A., Suib, L.S., Mhadeshwar, B.A.: Structure and oxidation activity correlations for carbon blacks and diesel soot. Energy Fuels. 26, 6757–6764 (2012)

  27. 27.

    Yang, H., Li, X., Wang, Y., Mu, M., Li, X., Kou, G.: Experimental investigation into the oxidation reactivity and nanostructure of particulate matter from diesel engine fuelled with diesel/polyoxymethylene dimethyl ethers blends. Sci. Rep. 6(1), 37611 (2016). https://doi.org/10.1038/srep37611

  28. 28.

    Muhlbauer, W., Zollner, C., Lehmann, S., Lorenz, S., Bruggemann, D.: Correlations between physicochemical properties of emitted diesel particulate matter and its reactivity. Combustion and Flame. 167, 39–51 (2016)

  29. 29.

    Dimou, I., Sappok, A., Wong, V., Fujii, S., Sakamoto, H., Yuuki, K., Vogt, C.D.: Influence of material properties and pore design parameters on non-catalyzed diesel particulate filter performance with ash accumulation. SAE Technical Paper 2012-01-1728. (2012)

  30. 30.

    Hansen, B.B., Jensen, A.G., Jensen, P.A.: Performance of diesel particulate filter catalysts in the presence of biodiesel ash species. Fuel. 106, 234–240 (2013)

  31. 31.

    Liati, A., Spiteri, A., Eggenschwiler, D.P., Vogel-Schäuble, N.: Microscopic investigation of soot and ash particulate matter derived from biofuel and diesel: implications for the reactivity of soot. J. Nanopart. Res. 14(1224), (2012)

  32. 32.

    Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., Poschl, U.: Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon. 43(8), 1731–1742 (2005)

  33. 33.

    Knight, D.S., White, W.B.: Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 4713 (1989)

  34. 34.

    Konstandopoulos, A., Pagkoura, C., Lorentzou, S., Kastrinaki, G.: Catalytic soot oxidation: effect of ceria-zirconia catalyst particle size SAE Technical Paper 2016-01-0968 (2016). https://doi.org/10.4271/2016-01-0968.

  35. 35.

    Kastrinaki, G., Lorentzou, S., Konstandopoulos, A.G.: Soot oxidation kinetics of different ceria nanoparticle catalysts. Emission Control Science and Technology. 1(3), 247–253 (2015). https://doi.org/10.1007/s40825-015-0021-z

  36. 36.

    Konstandopoulos, A., Papaioannou, E., Zarvalis, D., Skopa, S, et al.: Catalytic filter systems with direct and indirect soot oxidation activity, SAE Technical Paper 2005-01-0670 (2005). https://doi.org/10.4271/2005-01-0670.

  37. 37.

    Parent, P., Laffon, C., Marhaba, I., Ferry, D., Regier, T.Z., Ortega, K.I., Chazallon, B., Carpentier, Y., Focsa, C.: Nanoscale characterization of aircraft soot: a high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron and near-edge X-ray absorption spectroscopy study. Carbon. 101, 86–100 (2016)

  38. 38.

    Abboud, J., Schobing, J., Legros, G., Bonnety, J., Tschamber, V., Brillard, A., Leyssens, G., Lauga, V., Iojoiu, E.E., Da Costa, P.: Impacts of oxygenated compounds concentration on sooting propensities and soot oxidative reactivity: application to diesel and biodiesel surrogates. Fuel. 193, 241–253 (2017)

  39. 39.

    Stratakis, G.A., Stamatelos, A.M.: Thermogravimetric analysis of soot emitted by a modern diesel engine run on catalyst-doped fuel. Combust. Flame. 132(1-2), 157–169 (2003)

  40. 40.

    Soriano, J., Agudelo, J.R., Lopez, A.F., Armas, O.: Oxidation reactivity and nanostructural characterization of the soot coming from farnesane—a novel diesel fuel derived from sugar cane. Carbon. 125, 516–529 (2017)

  41. 41.

    Konstandopoulos, A., Kostoglou, M., Lorentzou, S., Pagkoura, C., et al.: Soot oxidation kinetics in diesel particulate filters. SAE Technical Paper 2007-01-1129. (2007). https://doi.org/10.4271/2007-01-1129.

  42. 42.

    Barry, V.S.A.A.L., Makkee, M., Moulijn, A.J.: Science and technology of catalytic diesel particulate filters. Catal. Rev. 43(4), 489–564 (2001)

  43. 43.

    Vander Wal, R.L., Mueller, C.J.: Initial investigation of effects of fuel oxygenation on nanostructure of soot from a direct-injection diesel engine. Energy Fuel. 20(6), 2364–2369 (2006)

  44. 44.

    Gao, J., Ma, C., Tian, G., Chen, J., Xing, S., Huang, L.: Oxidation activity restoration of diesel particulate matter by ageing in air. Energy Fuel. 32(2), 2450–2457 (2018)

Download references

Author information

Correspondence to Athanasios G. Konstandopoulos.

Ethics declarations

The authors confirm that there is no competing interest for the article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zygogianni, A., Syrigou, M., Konstandopoulos, A.G. et al. Oxidative Reactivity of Particulate Samples from Different Diesel Combustion Systems and Its Relation to Structural and Spectral Characteristics of Soot. Emiss. Control Sci. Technol. 5, 99–123 (2019). https://doi.org/10.1007/s40825-019-00118-1

Download citation


  • Diesel soot particles
  • Soot morphology
  • Soot microstructure
  • Soot oxidation