Emission Control Science and Technology

, Volume 4, Issue 4, pp 289–299 | Cite as

SO2 Oxidation Across Marine V2O5-WO3-TiO2 SCR Catalysts: a Study at Elevated Pressure for Preturbine SCR Configuration

  • Steen R. Christensen
  • Brian B. Hansen
  • Keld Johansen
  • Kim H. Pedersen
  • Joakim R. Thøgersen
  • Anker Degn JensenEmail author


The undesired oxidation of SO2 was studied experimentally at elevated pressures of up to 4.5 bar across two commercial vanadium-based (1.2 and 3 wt% V2O5) selective catalytic reduction (SCR) catalysts. This pressure range is of interest for preturbine SCR reactor configuration for NOx reduction on ships. The residence time in the catalyst was kept constant, independent on pressure, by adjusting the total flow rate. The conversion of SO2 was of the order 0.2–3% at temperatures of 300–400 °C and was independent of the pressure. Based on the measured conversion of SO2, the kinetics were fitted using an nth order rate expression. The reaction order of SO2 was found close to 1, and the reaction order of SO3 was found close to 0, also at increased pressures of up to 4.5 bar. The rate of SO2 oxidation was clearly promoted by the presence of 1000 ppm NOx at elevated pressure; however, at atmospheric pressure, the effect was within experimental uncertainty. The promoting effect is explained by a catalyzed redox reaction between SO2 and NO2, and since more NO2 is formed at elevated pressure, a higher degree of promotion by NOx is observed at elevated pressures.


SO2 oxidation Pressurized SO2 oxidation Preturbo SCR configuration SCR of NOx on ships SO3 formation 



Ammonium bisulfate


Ammonium sulfate


Exhaust gas recirculation


Heat exchanger


Mass flow controller


NOx emission control area


Nitrogen oxides


Residual mean square error


Residual sum of squares


Selective catalytic reduction


SOx emission control area


Sulfur oxides

V-SCR catalyst

Vanadium-based SCR catalyst



Reaction order of SO2 []


Reaction order of SO3 []


Activation Energy [kJ/mol]


Molar feed rate of component a [mol/s]


Gibbs free energy at 25 °C


SO2 rate constant at temperature Tref


Partial pressure of component a [Pa]


Total volumetric flow rate [m3/h]


Specific surface area of catalyst


Reference temperature for SO2 rate expression [K]


Mass of catalyst [kg]


Conversion []


Equilibrium conversion []


Calculated SO2 conversion.


Measured SO2 conversion


Funding information

This work is part of the Danish societal partnership, Blue INNOship, and partly funded by Innovation Fund Denmark (IFD) under File No. 155-2014-10 and the Danish Maritime Fund. SRC gratefully acknowledges the funding support and the help received from the team at Topsøe A/S while running the experiments at their facilities.

Compliance with Ethical Standards

The authors declare that they have no competing interests.

Supplementary material

40825_2018_92_MOESM1_ESM.docx (71 kb)
Online Resources 1 (DOCX 71 kb)


  1. 1.
    Lamas, M.I., Rodríguez, C.G.: Emissions from marine engines and NOX reduction methods. J. Marit. Res. 9(1), 77–81 (2012)Google Scholar
  2. 2.
    Österman, C., Magnusson, M.: A systemic review of shipboard SCR installations in practice. WMU J. Marit. Aff. 12(1), 63–85 (2013)CrossRefGoogle Scholar
  3. 3.
    Lehtoranta, K., Vesala, H., Koponen, P., Korhonen, S.: Selective catalytic reduction operation with heavy fuel oil: NOx , NH3, and particle emissions. Environ. Sci. Technol. 49(7), 4735–4741 (2015)CrossRefGoogle Scholar
  4. 4.
    Corbett, J.J., Fischbeck, P.: Emissions from ships. Science (80-). 278(5339), 823–824 (1997)CrossRefGoogle Scholar
  5. 5.
  6. 6.
  7. 7.
    Bosch, H., Janssen, F.: Preface. Catal. Today. 2(4), v (1988)CrossRefGoogle Scholar
  8. 8.
    Forzatti, P., Lietti, L.: Recent advances in deNOxing catalysis for stationary applications. Heterog. Chem. Rev. 3(1), 33–51 (1996)CrossRefGoogle Scholar
  9. 9.
    Centi, G.; Perathoner, S. Introduction: state of the art in the development of catalytic processes for the selective catalytic reduction of NOx into N2. Stud. Surf. Sci. Catal. 171, 1–23 (2007)Google Scholar
  10. 10.
    Koebel, M.; Elsener, M.; Madia, G. Recent advances in the development of urea-SCR for automotive applications. Sae Tech. Pap. (2001).
  11. 11.
    Soikkeli, N.; Lehikoinen, M.; Ronnback, K.-O. Design aspects of SCR systems for HFO fired marine diesel engines. In: Shanghai: Proceedings of the 27th CIMAC World Congress on Combustion Engine Technology, 13.–16.5.2013. Paper No.: 179, p. 14 (2013)Google Scholar
  12. 12.
    Bank, R.; Buchholz, B.; Harndorf, H.; Rabe, R.; Etzien, Conference papar, 27 th CIMAC World Congress on combustion Engine (2013)Google Scholar
  13. 13.
    Magnusson, M.; Fridell, E.; Harelind, H. Improved low-temperature activity for marine selective catalytic reduction systems. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 230(1) 126–135 (2016)Google Scholar
  14. 14.
    Blakeman, P.; Arnby, K.; Marsh, P.; Newman, C.; Smedler, G. Optimization of an SCR catalyst system to meet EUIV heavy duty diesel legislation. SAE Tech. Pap. (2008).
  15. 15.
    Walker, A. P.; Blakeman, P. G.; Ilkenhans, T.; Magnusson, B.; Mcdonald, A. C. The development and in-field demonstration of highly durable SCR catalyst systems Reprinted from: Diesel Exhaust Emission Control. SAE Int. 2004–01-1289 2004, No. 724Google Scholar
  16. 16.
    Ura, J. a; Girard, J.; Cavataio, G.; Montreuil, C.; Lambert, C. Cold start performance and enhanced thermal durability of vanadium SCR catalysts. SAE Tech. Pap. Ser. 01–0625, (2009).
  17. 17.
    Orsenigo, C., Beretta, A., Forzatti, P., Svachula, J., Tronconi, E., Bregani, F., Baldacci, A.: Theoretical and experimental study of the interaction between NOx reduction and SO2 oxidation over DeNOx-SCR catalysts. Catal. Today. 27(1–2), 15–21 (1996)CrossRefGoogle Scholar
  18. 18.
    Burke, J. M.; Johnson, K. L. Ammonium Sulfate and Bisulfate Formation in Air Preheaters. U.S. Environmental Protection Agency (1982)Google Scholar
  19. 19.
    Matsuda, S., Kamo, T., Kato, A., Nakajima, F., Kumura, T., Kuroda, H.: Deposition of ammonium bisulfate in the selective catalytic reduction of nitrogen oxides with ammonia. Ind. Eng. Chem. Prod. Res. Dev. 21(1), 48–52 (1982)CrossRefGoogle Scholar
  20. 20.
    Muzio, L., Bogseth, S., Himes, R., Chien, Y.-C., Dunn-Rankin, D.: Ammonium bisulfate formation and reduced load SCR operation. Fuel. 206, 180–189 (2017)CrossRefGoogle Scholar
  21. 21.
    Thøgersem, J. R.; Slabiak, T.; White, N. Ammonium Bisulphate Inhibition of SCR Catalysts Contents. Haldor Topsøe. (2012)
  22. 22.
    Kröcher, O., Elsener, M., Bothien, M.-R., Dölling, W.: Pre-turbo SCR—influence of pressure on NOx reduction. MTZ Worldw. 75(4), 46–51 (2014)CrossRefGoogle Scholar
  23. 23.
    Sandelin, K.; Peitz, D. SCR under Pressure—Pre-Turbocharger NOx Abatement for Marine 2-Stroke Diesel Engines. Conference papar, 28 th CIMAC World Congress on combustion Engine (2016)Google Scholar
  24. 24.
    Dunn, J.P., Koppula, P.R., Stenger, H.G., Wachs, I.E.: Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts. Appl. Catal. B Environ. 19(2), 103–117 (1998)CrossRefGoogle Scholar
  25. 25.
    Svachula, J., Alemany, L.J., Ferlazzo, N., Forzatti, P., Tronconi, E., Bregani, F.: Oxidation of sulfur dioxide to sulfur trioxide over honeycomb deNoxing catalysts. Ind. Eng. Chem. Res. 32(5), 826–834 (1993)CrossRefGoogle Scholar
  26. 26.
    Tronconi, E., Cavanna, A., Orsenigo, C., Forzatti, P.: Transient kinetics of SO2 oxidation over SCR-DeNO X monolith catalysts. Ind. Eng. Chem. Res. 38(7), 2593–2598 (1999)CrossRefGoogle Scholar
  27. 27.
    Magnusson, M., Fridell, E., Ingelsten, H.H.: The influence of sulfur dioxide and water on the performance of a marine SCR catalyst. Appl. Catal. B Environ. 111–112(145), 20–26 (2012)CrossRefGoogle Scholar
  28. 28.
    Kamata, H., Ohara, H., Takahashi, K., Yukimura, A., Seo, Y.: SO2 oxidation over the V2O5/TiO2 SCR catalyst. Catal. Lett. 73(1), 79–83 (2001)CrossRefGoogle Scholar
  29. 29.
    Beeckman, J.W., Hegedus, L.L.: Design of monolith catalysts for power plant NOx emission control. Chem. Res. 30(5), 969–978 (1991)Google Scholar
  30. 30.
    Orsenigo, C., Lietti, L., Tronconi, E., Forzatti, P., Bregani, F.: Dynamic investigation of the role of the surface sulfates in NOx reduction and SO2 oxidation over V2O5/WO3/TiO2 catalysts. Ind. Eng. Chem. Res. 37(6), 2350–2359 (1998)CrossRefGoogle Scholar
  31. 31.
    Nielsen, M. T. On the relative importance of SO2 oxidation to high dust SCR DeNOx units (accessed Oct 5, 2015)
  32. 32.
    Tronconi, E., Beretta, A., Elmi, A.S., Da Vinci, P.L., Malloggi, S., Baldacci, A.: A complete model of SCR monolith reactors for the analysis of interacting NOx reduction and SO2 oxidation reactions. Chem. Eng. Sci. 49 ((24), 4277–4287 (1994)CrossRefGoogle Scholar
  33. 33.
    Rawlings, J. B.; Ekerdt, J. G. Chemical reactor analysis and design fundamentals, 2. Edition.; Nob Hill Pub, (2002)Google Scholar
  34. 34.
    Plot digitizer (accessed Jan 24, 2018)
  35. 35.
    Sazonova, N.N., Tsykoza, L.T., Simakov, A.V., Barannik, G.B., Ismagilov, Z.R.: Relationship between sulfur dioxide oxidation and selective catalytic NO reduction by ammonia on V2O5−TiO2 catalysts doped with WO3 and Nb2O5. React. Kinet. Catal. Lett. 52(1), 101–106 (1994)CrossRefGoogle Scholar
  36. 36.
    Gabrielsson, P.; Pedersen, H. G. Flue gas from stationary sources. In Handbook of heterogeneous catalysis.; Ertl, G., Knözinger, H., Schüth, F., Weitkamp, J., Eds.; Wiley-VCH, pp 2345–2385. (2008)Google Scholar
  37. 37.
    Ivanov, A.A., Balzhinimaev, B.S.: New data on kinetics and reaction mechanism for SO2 oxidation over vanadium catalysts. React. Kinet. Catal. Lett. 35(1–2), 413–424 (1987)CrossRefGoogle Scholar
  38. 38.
    Tsukahara, H., Ishida, T., Mayumi, M.: Gas-phase oxidation of nitric oxide: chemical kinetics and rate constant. Nitric Oxide. 3(3), 191–198 (1999)CrossRefGoogle Scholar
  39. 39.
    Glarborg, P.: Hidden interactions—trace species governing combustion and emissions. Proc. Combust. Inst. 31(1), 77–98 (2007)CrossRefGoogle Scholar
  40. 40.
    NIST database (accessed Dec 22, 2017)

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Haldor Topsøe A/SKgs. LyngbyDenmark
  3. 3.Umicore Denmark ApSKgs. LyngbyDenmark

Personalised recommendations