Emission Control Science and Technology

, Volume 4, Issue 2, pp 78–89 | Cite as

A Summary of Sulfur Deactivation, Desorption, and Regeneration Characteristics of Mono- and Bimetallic Pd-Pt Methane Oxidation Catalysts: Pd:Pt Mole Ratio and Particle Size Dependency

  • Monique Shauntá Wilburn
  • William S. Epling
Special Issue: 2017 CLEERS October 3 - 5, Ann Arbor, MI, USA


Complete CH4 oxidation (combustion) studies were conducted with fresh (small particle size) and sintered (large particle size) Pd/Pt bimetallic, Al2O3 supported catalysts before and after exposure to SO2. Temperature-programmed oxidation, reduction, and desorption as models for potential catalyst regeneration were evaluated in terms of CH4 oxidation performance recovery. Temperature-programmed desorption studies show that Pd/Pt catalysts with little Pt substitution or small particle sizes tended to form aluminum sulfate species at low temperatures. Aluminum sulfate species thermally decompose at high temperatures, thus requiring high-temperature conditions to recover catalytic activity lost due to sulfate formation. In contrast, Pd/Pt catalysts with higher Pt content or larger particle sizes were less effective at sulfate formation at low temperatures. In this case, low-temperature decomposing sulfur species inhibited the CH4 oxidation reaction over a broader temperature range. For Pd/Pt catalysts with high Pt content and small particle size, the associated sintering effects from the temperature-programmed reduction and desorption methods were more detrimental to catalytic activity than the sulfur exposure used in this study. Sintering bimetallic samples increased the particle size and provided some resistance to further sintering. Sintered, SO2-exposed Pd/Pt catalysts with low Pt content recovered all activity via temperature-programmed desorption regeneration, whereas those with high Pt content catalysts only recovered some activity. Regardless of particle size, the effectiveness of the temperature-programmed desorption regeneration method decreased with increasing Pt content.


Methane oxidation Sulfur poisoning 



The authors would like to acknowledge the National Aeronautics and Space Administration for the allowance of a flexible work schedule while completing the work herein.

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Gélin, P., Primet, M.: Appl. Catal. B Environ. 39, 1–37 (2002)CrossRefGoogle Scholar
  2. 2.
    C.A. Sharp, T.L. Ullman, K.R. Stamper, Society of Automotive Engineers Inc. 932819 (1993)Google Scholar
  3. 3.
    Twigg, M.: Catal. Today. 117(4), 407–418 (2006)CrossRefGoogle Scholar
  4. 4.
    R. Abbasi, L. Wu, S.E. Wanke, R.E. Hayes, Chem. Eng. Res. Des., 1930–1942 (2012)Google Scholar
  5. 5.
    O. Demoulin, B. L. Clef, M. Navez, P. Ruiz, Appl. Catal. A Gen. 344 (2008)Google Scholar
  6. 6.
    Burch, R., Breen, J.P., Meunier, F.C.: Appl. Catal. B Environ. 39, 283–303 (2002)CrossRefGoogle Scholar
  7. 7.
    Chen, M., Schmidt, L.D.: J. Catal. 56, 198 (1979)CrossRefGoogle Scholar
  8. 8.
    Morlang, A., Neuhausen, U., Klementiev, K.V., Schutze, F.-W., Miehe, G., Fuess, H., Lox, E.S.: Appl. Catal. B Environ. 60, 191 (2005)CrossRefGoogle Scholar
  9. 9.
    Kaneeda, M., Iizuka, H., Hiratsuka, T., Shinotsuka, N., Arai, M.: Appl. Catal. B Environ. 90, 564 (2009)CrossRefGoogle Scholar
  10. 10.
    L. Glover, R. Douglas, G. McCullough, M. Keenan, P. Reverealt, C. McAtee, SAE International, 2011-24-0193 (2011)Google Scholar
  11. 11.
    Burch, R., Loader, P.: Appl. Catal. B Environ. 5, 149–164 (1994)CrossRefGoogle Scholar
  12. 12.
    Oh, S.E., Mitchell, P.J., Siewart, R.M.: J. Catal. 132, 287 (1991)CrossRefGoogle Scholar
  13. 13.
    H. Yamamoto and H. Uchida, Catal. Today 45 (1998)Google Scholar
  14. 14.
    Kinnunen, N.M., Hirvi, J.T., Suvanto, M., Pakkanen, T.A.: J. Mol. Catal. A Chem. 356, (2012)Google Scholar
  15. 15.
    M. Skoglundh, L.O. Löwendahl, J.E. Ottersted, Appl. Catal. 77 (1991)Google Scholar
  16. 16.
    G. Lapisardi, L. Urfels, P. Gélin, M. Primet, A. Kaddouri, E. Garbowski, S. Toppi, and E. Tena, Catal. Today 117 (2006)Google Scholar
  17. 17.
    Ohtsuka, H.: Catal. Lett. 141, 413–419 (2011)CrossRefGoogle Scholar
  18. 18.
    Castellazzi, P., Groppi, G., Forzatti, P.: Appl. Catal. B Environ. 95, 303–311 (2010)CrossRefGoogle Scholar
  19. 19.
    Persson, K., Ersson, A., Jansson, K., Fierro, J.L.G., Järås, S.G.: J. Catal. 243, 14–24 (2006)CrossRefGoogle Scholar
  20. 20.
    Corro, G., Cano, C., Fierro, J.L.G.: J. Mol. Catal. A Chem. 315, 35–42 (2010)CrossRefGoogle Scholar
  21. 21.
    Mowery, D., McCormick, R.: Appl. Catal. B Environ. 34, 287–297 (2001)CrossRefGoogle Scholar
  22. 22.
    Yu, T., Shaw, H.: Appl. Catal. B Environ. 18, 105–114 (1998)CrossRefGoogle Scholar
  23. 23.
    Wilburn, M.S., Epling, W.S.: Appl. Catal. B Environ. 206, 589–598 (2017)CrossRefGoogle Scholar
  24. 24.
    Wilburn, M.S., Epling, W.S.: Appl. Catal. A Gen. 534, 85–93 (2017)CrossRefGoogle Scholar
  25. 25.
    M.S. Wilburn, W.S. Epling, Catal. Today (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Monique Shauntá Wilburn
    • 1
    • 2
  • William S. Epling
    • 2
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of HoustonHoustonUSA
  2. 2.Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations