Natural Gas Engine Emission Reduction by Catalysts

Abstract

In order to meet stringent emission limits, after-treatment systems are increasingly utilized in natural gas engine applications. In this work, two catalyst systems were studied in order to clarify how the catalysts affect, e.g. hydrocarbons, NO x and particles present in natural gas engine exhaust. A passenger car engine modified to run with natural gas was used in a research facility with possibilities to modify the exhaust gas properties. High NO x reductions were observed when using selective catalytic reduction, although a clear decrease in the NO x reduction was recorded at higher temperatures. The relatively fresh methane oxidation catalyst was found to reach reductions greater than 50% when the exhaust temperature and the catalyst size were sufficient. Both the studied catalyst systems were found to have a significant effect on particulate emissions. The observed particle mass reduction was found to be due to a decrease in the amount of organics passing over the catalyst. However, especially at high exhaust temperatures, high nanoparticle concentrations were observed downstream of the catalysts together with higher sulphate concentrations in particles. This study contributes to understanding emissions from future natural gas engine applications with catalysts in use.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Abdelaal, M.M., Hegab, A.H.: Combustion and emissions characteristics of a natural gas-fueled diesel engine with EGR. Energy Convers. Manag. 64, 301–312 (2012)

    Article  Google Scholar 

  2. 2.

    Alanen, J., Saukko, E., Lehtoranta, K., Murtonen, T., Timonen, H., Hillamo, R., Karjalainen, P., Kuuluvainen, H., Harra, J., Keskinen, J., Rönkkö, T.: The formation and physical properties of the particle emissions from a natural gas engine. Fuel 162, 155–161 (2015)

    Article  Google Scholar 

  3. 3.

    Arnold, F., Pirjola, L., Rönkkö, T., Reichl, U., Schlager, H., Lähde, T., Heikkilä, J., Keskinen, J.: First on-line measurements of sulphuric acid gas in modern heavy duty diesel engine exhaust: implications for nanoparticle formation. Environ. Sci. Technol. 46, 11227–11234 (2012)

    Article  Google Scholar 

  4. 4.

    Canagaratna, M.R., Jayne, J.T., Ghertner, D.A., Herndon, S., Shi, Q., Jimenez, J.L., Silva, P.J., Williams, P., Lanni, T., Drewnick, F., Demerjian, K.L., Kolb, C.E., Worsnop, D.R.: Chase studies of particulate emissions from in-use New York City vehicles. Aerosol Sci. Technol. 38, 555–573 (2004)

    Article  Google Scholar 

  5. 5.

    Chirico, R., Prevot, A.S.H., DeCarlo, P.F., Heringa, M.F., Richter, R., Weingartner, E., Baltensperger, U.: Aerosol and trace gas vehicle emission factors measured in a tunnel using an aerosol mass spectrometer and other on-line instrumentation. Atmos. Environ. 45, 2182–2192 (2011)

    Article  Google Scholar 

  6. 6.

    Cho, H.M., He, B.-Q.: Spark ignition natural gas engines—a review. Energy Convers. Manag. 48, 608–618 (2007)

    Article  Google Scholar 

  7. 7.

    Corro, G., Cano, C., Fierro, J.L.G.: A study of Pt-Pd/γ-Al2O3 catalysts for methane oxidation resistant to deactivation by sulfur poisoning. J. Mol. Catal. A Chem. 315, 35–42 (2010)

    Article  Google Scholar 

  8. 8.

    Forzatti, P., Lietti, L.: Recent advances in De-NOxing catalysis for stationary applications. Heterog. Chem. Rev. 3, 33–51 (1996)

    Article  Google Scholar 

  9. 9.

    Gelin, P., Urfels, L., Primet, M., Tena, E.: Complete oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fuelled vehicles emissions: influence of water and sulphur containing compounds. Catal. Today 83, 45–57 (2003)

    Article  Google Scholar 

  10. 10.

    Heikkilä, J., Rönkkö, T., Lähde, T., Lemmetty, M., Arffman, A., Virtanen, A., Keskinen, J., Pirjola, L., Rothe, D.: Effect of open channel filter on particle emissions of modern diesel engine. J. Air Waste Manage. Assoc. 59(10), 1148–1154 (2009)

    Article  Google Scholar 

  11. 11.

    Hesterberg, T.W., Lapin, C.A., Bunn, W.B.: A comparison of emissions from vehicles fuelled with diesel or compressed natural gas. Environ. Sci. Technol. 42, 6437–6445 (2008)

    Article  Google Scholar 

  12. 12.

    Jayaratne, E.R., Ristovski, Z.D., Meyer, N., Morawska, L.: Particle and gaseous emissions from compressed natural gas and ultralow sulphur diesel-fuelled buses at four steady engine loads. Sci. Total Environ. 407, 2845–2852 (2009)

    Article  Google Scholar 

  13. 13.

    Kittelson, D.B., Watts, W.F., Johnson, J.P., Thorne, C., Higham, C., Payne, M., Goodier, S., Warrens, C., Preston, H., Zink, U., Pickles, D., Goersmann, C., Twigg, M.V., Walker, A.P., Boddy, R.: Effect of fuel and lube oil sulfur on the performance of a diesel exhaust gas continuously regenerating trap. Environ. Sci. Technol. 42, 9276–9282 (2008)

    Article  Google Scholar 

  14. 14.

    Koebel, M., Strutz, E.O.: Thermal and hydrolytic decomposition of urea for automotive selective catalytic reduction systems: thermochemical and practical aspects. Ind. Eng. Chem. Res. 42, 2093–2100 (2003)

    Article  Google Scholar 

  15. 15.

    Lähde, T., Rönkkö, T., Virtanen, A., Schuck, T., Pirjola, L., Hämeri, K., Kulmala, M., Arnold, F., Rothe, D., Keskinen, J.: Heavy duty diesel engine exhaust aerosol particle and ion measurements. Environ. Sci. Technol. 43, 163–168 (2009)

    Article  Google Scholar 

  16. 16.

    Lambert, J.K., Kazi, M.S., Farrauto, R.J.: Palladium catalyst performance for methane emissions abatement from lean burn natural gas vehicles. Appl. Catal. B Environ. 14, 211–223 (1997)

    Article  Google Scholar 

  17. 17.

    Lehtoranta, K., Vesala, H., Koponen, P., Korhonen, S.: Selective catalytic reduction operation with heavy fuel oil: NO x and NH3, and particle emissions. Environ. Sci. Technol. 49, 4735–4741 (2015)

    Article  Google Scholar 

  18. 18.

    Lietti, L., Nova, I., Forzatti, P.: Selective catalytic reduction of NO by NH3 over TiO2-supported V2O5-WO3 and V2O5-MoO3 catalysts. Top. Catal. 11, 111–122 (2000)

    Article  Google Scholar 

  19. 19.

    Liu, J., Yang, F., Wang, H., Ouyang, M., Hao, S.: Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing. Appl. Energy 110, 201–206 (2013)

    Article  Google Scholar 

  20. 20.

    Majewski, W.A., Khair, M.K.: Diesel emissions and their control. SAE International, Warrendale (2006)

    Google Scholar 

  21. 21.

    Maricq, M.M., Chase, R.E., Xu, N., Laing, P.M.: The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: light duty diesel vehicles. Environ. Sci. Technol. 36, 283–289 (2002)

    Article  Google Scholar 

  22. 22.

    Mikkanen, P, Moisio, M, Keskinen, J, Ristimäki, J, Marjamäki, M.: Sampling method for particle measurements of vehicle exhaust. Society of Automotive Engineers (SAE) Technical Paper 2001-01-0219

  23. 23.

    Mitchell, C.E., Olsen, D.B.: Formaldehyde formation in large bore natural gas engines part 1: formation mechanisms. J. Eng. Gas Turbines Power 122, 603–610 (2000)

    Article  Google Scholar 

  24. 24.

    Murtonen, T., Lehtoranta, K., Korhonen, S., Vesala, H., Koponen, P.: Imitating emission matrix of large natural gas engine opens new possibilities for catalyst studies in engine laboratory. CIMAC Pap. pp. 107 (2016)

  25. 25.

    Ntziachristos, L., Giechaskiel, B., Pistikopoulos, P., Samaras, Z., Mathis, U., Mohr, M., et al.: Performance evaluation of a novel sampling and measurement system for exhaust particle characterization. Society of Automotive Engineers (SAE) Technical Paper 2004-01-1439

  26. 26.

    Olin, M., Rönkkö, T., Dal Maso, M.: CFD modeling of a vehicle exhaust laboratory sampling system: sulfur-driven nucleation and growth in diluting diesel exhaust. Atmos. Chem. Phys. 15, 5305–5323 (2015)

    Article  Google Scholar 

  27. 27.

    Olsen, D.B., Mitchell, C.E.: Formaldehyde formation in large bore natural gas engines part 2: factors affecting measured CH2O. J. Eng. Gas Turbines Power 122, 611–616 (2000)

    Article  Google Scholar 

  28. 28.

    Olsen, D.B., Kohls, M., Arney, G.: Impact of oxidation catalysts on exhaust NO2/NO x ratio from lean-burn natural gas engines. J. Air Waste Manage. Assoc. 60, 867–874 (2010)

    Article  Google Scholar 

  29. 29.

    Onasch, T.B., Trimborn, A., Fortner, E.C., Jayne, J.T., Kok, G.L., Williams, L.R., Davidovits, P., Worsnop, D.R.: Soot particle aerosol mass spectrometer: development, validation, and initial application. Aerosol Sci. Technol. 46, 804–817 (2012)

    Article  Google Scholar 

  30. 30.

    Ottinger, N., Veele, R., Xi, Y., Liu, Z. G.: Desulfation of Pd-based oxidation catalysts for lean-burn natural gas and dual-fuel applications. SAE Tech. Pap. Ser. 2015, SAE paper 2015-01-0991

  31. 31.

    Pirjola, L., Karl, M., Rönkkö, T., Arnold, F.: Model studies of volatile diesel exhaust particle formation: are organic vapours involved in nucleation and growth? Atmos. Chem. Phys. 15, 10435–10452 (2015)

    Article  Google Scholar 

  32. 32.

    Pope III, C.A., Dockery, D.W.: Health effects of fine particulate air pollution: lines that connect. J. Air Waste Manag. Assoc. 56, 709–742 (2006)

    Article  Google Scholar 

  33. 33.

    Ristovski, Z.D., Morawska, L., Hitchins, J., Thomas, S., Greenway, C., Gilbert, D.: Particle emissions from compressed natural gas engines. J. Aerosol Sci. 31, 403–413 (2000)

    Article  Google Scholar 

  34. 34.

    Rönkkö, T., Lähde, T., Heikkilä, J., Pirjola, L., Bauchke, U., Arnold, F., Rothe, D., Yli-Ojanperä, J., Keskinen, J.: Effects of gaseous sulphuric acid on diesel exhaust nanoparticle formation and characteristics. Environ. Sci. Technol. 47, 11882–11889 (2013)

    Article  Google Scholar 

  35. 35.

    Vaaraslahti, K., Virtanen, A., Ristimäki, J., Keskinen, J.: Nucleation mode formation in heavy-duty diesel exhaust with and without a particulate filter. Environ. Sci. Technol. 38, 4884–4890 (2004)

    Article  Google Scholar 

  36. 36.

    Venezia, A.M., Di Carlo, G., Pantaleo, G., Liotta, L.F., Melaet, G., Kruse, N.: Oxidation of CH4 over Pd supported on TiO2-doped SiO2: effect of Ti(IV) loading and influence of SO2. Appl. Catal. B 88, 430–437 (2009)

    Article  Google Scholar 

  37. 37.

    Yim, S.D., Kim, S.K., Baik, J.B., Nam, I.-S., Mok, Y.S., Lee, J.-H., Cho, B.K., Oh, S.H.: Decomposition of urea into NH3 for the SCR process. Ind. Eng. Chem. Res. 43, 4856–4863 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The study was conducted in a research project funded by Tekes (Finnish Funding Agency for Technology and Innovation) and industrial partners: Wärtsilä Finland, Dinex Ecocat, Dekati, Neste, Suomi Analytics and AGCO Power. Sanna Saarikoski acknowledges the Academy of Finland (grant no. 259016). Jenni Alanen acknowledges Gasum kaasurahasto for financial support. The authors also thank Pekka Piimäkorpi at VTT for his contribution to the emission measurements and analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kati Lehtoranta.

Ethics declarations

The authors declare no competing financial interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lehtoranta, K., Murtonen, T., Vesala, H. et al. Natural Gas Engine Emission Reduction by Catalysts. Emiss. Control Sci. Technol. 3, 142–152 (2017). https://doi.org/10.1007/s40825-016-0057-8

Download citation

Keywords

  • Natural Gas
  • Engine emissions
  • Methane oxidation
  • NO x reduction
  • Nanoparticles