Skip to main content

Understanding low temperature oxidation activity of nanoarray-based monolithic catalysts: from performance observation to structural and chemical insights

Abstract

Monolithic catalysts have been widely used in automotive, chemical, and energy relevant industries. Nanoarray-based monolithic catalysts have been developed, demonstrating high catalyst utilization efficiency and good thermal/mechanical robustness. Compared with the conventional washcoat-based monolithic catalysts, they have shown advances in precise and optimum microstructure control and feasibility in correlating materials structure with properties. Recently, the nanoarray-based monolithic catalysts have been studied for low temperature oxidation of automotive engine exhaust and exhibited interesting and promising catalytic activities. This review focuses on discussing the key structural parameters of nanoarray catalyst that affect the catalytic performance from the following aspects: (1) geometric shape and crystal planes, (2) guest atom doping and defects, (3) array size and size-assisted active species loading, and (4) the synergy effect of metal oxide in composite nanoarrays. Prior to the discussion, an overview of the current status of synthesis and development of the nanoarray-based monolithic catalysts is introduced. The performance of these materials in low temperature simulated engine exhaust oxidation is also demonstrated. We hope this review will elucidate the science and chemistry behind the good oxidation performance of the nanoarray-based monolithic catalysts and serve as a timely and useful research guide for rational design and further improvement of the nanoarray-based monolithic catalysts for automobile emission control.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Lundberg, B., Sjöblom, J., Johansson, Å., Westerberg, B., Creaser, D.: DOC modeling combining kinetics and mass transfer using inert washcoat layers. Appl. Catal. B Environ. 191, 116–129 (2016)

    Article  Google Scholar 

  2. Twigg, M.V.: Progress and future challenges in controlling automotive exhaust gas emissions. Appl. Catal. B Environ. 70, 2–15 (2007)

    Article  Google Scholar 

  3. Herreros, J.M., Gill, S.S., Lefort, I., Tsolakis, A., Millington, P., Moss, E.: Enhancing the low temperature oxidation performance over a Pt and a Pt-Pd diesel oxidation catalyst. Appl. Catal. B Environ. 147, 835–841 (2014)

    Article  Google Scholar 

  4. Epling, W.S., Campbell, L.E., Yezerets, A., Currier, N.W., Parks, J.E.: Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts. Catal. Rev. Sci. Eng. 46, 163–245 (2004)

    Article  Google Scholar 

  5. Matti Maricq, M.: Chemical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci. 38, 1079–1118 (2007)

    Article  Google Scholar 

  6. Zammit, M., Dimaggio, C., Kim, C., Lambert, C., Muntean, G., Peden, C., Parks, J., Howden, K.: Future automotive aftertreatment solutions: the 150 °C challenge workshop report. US DRIVE Work shop (2012)

  7. Yamamoto, H., Uchida, H.: Oxidation of Methane over Pt and Pd Supported on Alumina in Lean-Burn Natural-Gas Engine Exhaust. Catal. Today. 45, 147–151 (1998)

    Article  Google Scholar 

  8. Windeatt, J., Brady, G., Usher, P., Li, H., Hadavi, A.: Real world cold start emissions from a diesel vehicle. In: SAE Technical Paper. SAE Technical Paper 2012-01-1075 (2012)

  9. Roberts, A., Brooks, R., Shipway, P.: Internal combustion engine cold-start efficiency : A review of the problem, causes and potential solutions. Energy Convers. Manag. 82, 327–350 (2014)

    Article  Google Scholar 

  10. Elsom, D.: Smog alert: managing urban air quality. Earthscan (2013)

  11. Johnson, T. V: Diesel emission control in review. SAE Int. J. Fuels Lubr. 2, 1–12 (2009)

  12. Tarascon, J.-M., Poizot, P., Laruelle, S., Grugeon, S., Dupont, L.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 407, 496–499 (2000)

    Article  Google Scholar 

  13. Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., Lieber, C.M.: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature. 415, 617–620 (2002)

    Article  Google Scholar 

  14. Wang, S., Ren, Z., Guo, Y., Gao, P.-X.: Nano-array integrated monolithic devices: toward rational materials design and multi-functional performance by scalable nanostructures assembly. CrystEngComm. 18, 2980–2993 (2016)

    Article  Google Scholar 

  15. Liu, Y., Harold, M.P., Luss, D.: Coupled NOx storage and reduction and selective catalytic reduction using dual-layer monolithic catalysts. Appl. Catal. B Environ. 121–122, 239–251 (2012)

  16. Ding, B., Wang, M., Wang, X., Yu, J., Sun, G.: Electrospun nanomaterials for ultrasensitive sensors. Mater. Today. 13, 16–27 (2010)

    Article  Google Scholar 

  17. Zhao, X., Lv, L., Pan, B., Zhang, W., Zhang, S., Zhang, Q.: Polymer-supported nanocomposites for environmental application: A review. Chem. Eng. J. 170, 381–394 (2011)

    Article  Google Scholar 

  18. Guo, Y., Ren, Z., Xiao, W., Liu, C., Sharma, H., Gao, H., Mhadeshwar, A., Gao, P.X.: Robust 3-D configurated metal oxide nano-array based monolithic catalysts with ultrahigh materials usage efficiency and catalytic performance tunability. Nano Energy. 2, 873–881 (2013)

    Article  Google Scholar 

  19. Zhang, Z., Gao, H., Cai, W., Liu, C., Guo, Y., Gao, P.-X.: In situ TPR removal: a generic method for fabricating tubular array devices with mechanical and structural soundness, and functional robustness on various substrates. J. Mater. Chem. 22, 23098–23105 (2012)

    Article  Google Scholar 

  20. Gao, P.X., Ding, Y., Mai, W., Hughes, W.L., Lao, C., Wang, Z.L.: Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science. 309, 1700–1704 (2005)

  21. Gao, P.X., Ding, Y., Wang, Z.L.: Electronic transport in superlattice-structured ZnO nanohelix. Nano Lett. 9, 137–143 (2009)

    Article  Google Scholar 

  22. Yang, Q., Lu, Z., Liu, J., Lei, X., Chang, Z., Luo, L., Sun, X.: Metal oxide and hydroxide nanoarrays: Hydrothermal synthesis and applications as supercapacitors and nanocatalysts. Prog. Nat. Sci. Mater. Int. 23, 351–366 (2013)

    Article  Google Scholar 

  23. Li, P., Jin, Z., Yang, J., Jin, Y., Xiao, D.: Highly Active 3D-Nanoarray-Supported Oxygen-Evolving Electrode Generated From Cobalt-Phytate Nanoplates. Chem. Mater. 28, 153–161 (2016)

    Article  Google Scholar 

  24. Li, Y., Hasin, P., Wu, Y.: NixCo3−xO4 Nanowire Arrays for Electrocatalytic Oxygen Evolution. Adv. Mater. 22, 1926–1929 (2010)

    Article  Google Scholar 

  25. Liu, J., Zhou, W., Lai, L., Yang, H., Hua Lim, S., Zhen, Y., Yu, T., Shen, Z., Lin, J.: Three dimensionals α-Fe2O3/polypyrrole (Ppy) nanoarray as anode for micro lithium ion batteries. Nano Energy. 2, 726–732 (2013)

    Article  Google Scholar 

  26. Farrauto, R.J., Voss, K.E.: Monolithic diesel oxidation catalysts. Appl. Catal. B Environ. 10, 29–51 (1996)

    Article  Google Scholar 

  27. Winkler, A., Ferri, D., Aguirre, M.: The influence of chemical and thermal aging on the catalytic activity of a monolithic diesel oxidation catalyst. Appl. Catal. B Environ. 93, 177–184 (2009)

    Article  Google Scholar 

  28. Ren, Z., Guo, Y., Gao, P.-X.: Nano-array based monolithic catalysts: Concept, rational materials design and tunable catalytic performance. Catal. Today. 258, 441–453 (2015)

    Article  Google Scholar 

  29. Wang, Q., Park, S.Y., Duan, L., Chung, J.S.: Activity, stability and characterization of NO oxidation catalyst Co/KxTi2O5. Appl. Catal. B Environ. 85, 10–16 (2008)

    Article  Google Scholar 

  30. Wang, Q., Park, S.Y., Choi, J.S., Chung, J.S.: Co/KxTi2O5 catalysts prepared by ion exchange method for NO oxidation to NO2. Appl. Catal. B Environ. 79, 101–107 (2008)

    Article  Google Scholar 

  31. Haneda, M., Kintaichi, Y., Bion, N., Hamada, H.: Alkali metal-doped cobalt oxide catalysts for NO decomposition. Appl. Catal. B Environ. 46, 473–482 (2003)

    Article  Google Scholar 

  32. Irfan, M.F., Goo, J.H., Kim, S.D.: Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process. Appl. Catal. B Environ. 78, 267–274 (2008)

    Article  Google Scholar 

  33. Sofianou, M.-V., Trapalis, C., Psycharis, V., Boukos, N., Vaimakis, T., Yu, J., Wang, W.: Study of TiO2 anatase nano and microstructures with dominant {001} facets for NO oxidation. Environ. Sci. Pollut. Res. 19, 3719–3726 (2012)

    Article  Google Scholar 

  34. Mguig, B., Calatayud, M., Minot, C.: Theoretical investigation of NO oxidation over TiO2-anatase. Surf. Rev. Lett. 10, 175–182 (2003)

    Article  Google Scholar 

  35. Tang, N., Liu, Y., Wang, H., Wu, Z.: Mechanism Study of NO Catalytic Oxidation over MnOx/TiO2 Catalysts. J. Phys. Chem. C. 115, 8214–8220 (2011)

  36. Leistner, K., Nicolle, A., Da Costa, P.: Modelling the kinetics of NO oxidation and NOx storage over platinum, ceria and ceria zirconia. Appl. Catal. B Environ. 111, 415–423 (2012)

    Article  Google Scholar 

  37. Mingshan, C.U.I., Yuan, L.I., Xinquan, W., Jun, W., Meiqing, S.: Effect of preparation method on MnO x-CeO2 catalysts for NO oxidation. J. Rare Earths. 31, 572–576 (2013)

    Article  Google Scholar 

  38. Lin, F., Wu, X., Weng, D.: Effect of barium loading on CuOx–CeO2 catalysts: NOx storage capacity. NO oxidation ability and soot oxidation activity. Catal. today. 175, 124–132 (2011)

    Google Scholar 

  39. Manzoli, M., Chiorino, A., Boccuzzi, F.: Interface species and effect of hydrogen on their amount in the CO oxidation on Au/ZnO. Appl. Catal. B Environ. 52, 259–266 (2004)

    Article  Google Scholar 

  40. Carabineiro, S.A.C., Machado, B.F., Bacsa, R.R., Serp, P., Dražić, G., Faria, J.L., Figueiredo, J.L.: Catalytic performance of Au/ZnO nanocatalysts for CO oxidation. J. Catal. 273, 191–198 (2010)

    Article  Google Scholar 

  41. Liu, X., Liu, M.-H., Luo, Y.-C., Mou, C.-Y., Lin, S.D., Cheng, H., Chen, J.-M., Lee, J.-F., Lin, T.-S.: Strong metal–support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 134, 10251–10258 (2012)

    Article  Google Scholar 

  42. Jia, C.-J., Schwickardi, M., Weidenthaler, C., Schmidt, W., Korhonen, S., Weckhuysen, B.M., Schüth, F.: Co3O4–SiO2 nanocomposite: a very active catalyst for CO oxidation with unusual catalytic behavior. J. Am. Chem. Soc. 133, 11279–11288 (2011)

    Article  Google Scholar 

  43. Hu, L., Sun, K., Peng, Q., Xu, B., Li, Y.: Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 3, 363–368 (2010)

    Article  Google Scholar 

  44. Xie, X., Li, Y., Liu, Z.-Q., Haruta, M., Shen, W.: Low-temperature oxidation of CO catalysed by Co(3)O(4) nanorods. Nature. 458, 746–749 (2009)

    Article  Google Scholar 

  45. Maeda, Y., Iizuka, Y., Kohyama, M.: Generation of oxygen vacancies at a Au/TiO2 perimeter interface during CO oxidation detected by in situ electrical conductance measurement. J. Am. Chem. Soc. 135, 906–909 (2013)

    Article  Google Scholar 

  46. Bonanni, S., Aït-Mansour, K., Harbich, W., Brune, H.: Effect of the TiO2 reduction state on the catalytic CO oxidation on deposited size-selected Pt clusters. J. Am. Chem. Soc. 134, 3445–3450 (2012)

    Article  Google Scholar 

  47. Green, I.X., Tang, W., Neurock, M., Yates, J.T.: Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science. 333, 736–739 (2011)

  48. Widmann, D., Behm, R.J.: Active oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity. Angew. Chemie Int. Ed. 50, 10241–10245 (2011)

    Article  Google Scholar 

  49. Li, Z.-X., Li, L.-L., Yuan, Q., Feng, W., Xu, J., Sun, L.-D., Song, W.-G., Yan, C.-H.: Sustainable and facile route to nearly monodisperse spherical aggregates of CeO2 nanocrystals with ionic liquids and their catalytic activities for CO oxidation. J. Phys. Chem. C. 112, 18405–18411 (2008)

    Article  Google Scholar 

  50. Ke, J., Zhu, W., Jiang, Y., Si, R., Wang, Y.-J., Li, S.-C., Jin, C., Liu, H., Song, W.-G., Yan, C.-H.: Strong Local Coordination Structure Effects on Subnanometer PtOx Clusters over CeO2 Nanowires Probed by Low-Temperature CO Oxidation. ACS Catal. 5, 5164–5173 (2015)

    Article  Google Scholar 

  51. Chen, S., Luo, L., Jiang, Z., Huang, W.: Size-dependent reaction pathways of low-temperature CO oxidation on Au/CeO2 catalysts. ACS Catal. 5, 1653–1662 (2015)

    Article  Google Scholar 

  52. Kim, K.-J., Ahn, H.-G.: Complete oxidation of toluene over bimetallic Pt–Au catalysts supported on ZnO/Al2O3. Appl. Catal. B Environ. 91, 308–318 (2009)

    Article  Google Scholar 

  53. Wu, H., Wang, L., Zhang, J., Shen, Z., Zhao, J.: Catalytic oxidation of benzene, toluene and pxylene over colloidal gold supported on zinc oxide catalyst. Catal. Commun. 12, 859–865 (2011)

    Article  Google Scholar 

  54. Liu, Q., Wang, L.-C., Chen, M., Cao, Y., He, H.-Y., Fan, K.-N.: Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane. J. Catal. 263, 104–113 (2009)

    Article  Google Scholar 

  55. Zhu, Z., Lu, G., Zhang, Z., Guo, Y., Guo, Y., Wang, Y.: Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: effect of the preparation method. ACS Catal. 3, 1154–1164 (2013)

    Article  Google Scholar 

  56. Luo, J.-Y., Meng, M., Zha, Y.-Q., Guo, L.-H.: Identification of the active sites for CO and C3H8 total oxidation over nanostructured CuO− CeO2 and Co3O4− CeO2 catalysts. J. Phys. Chem. C. 112, 8694–8701 (2008)

    Article  Google Scholar 

  57. Yao, Y.-F.Y.: The oxidation of hydrocarbons and CO over metal oxides: III. Co3O4. J. Catal. 33, 108–122 (1974)

    Article  Google Scholar 

  58. Taylor, M.N., Zhou, W., Garcia, T., Solsona, B., Carley, A.F., Kiely, C.J., Taylor, S.H.: Synergy between tungsten and palladium supported on titania for the catalytic total oxidation of propane. J. Catal. 285, 103–114 (2012)

    Article  Google Scholar 

  59. Enterkin, J.A., Setthapun, W., Elam, J.W., Christensen, S.T., Rabuffetti, F.A., Marks, L.D., Stair, P.C., Poeppelmeier, K.R., Marshall, C.L.: Propane oxidation over Pt/SrTiO3 nanocuboids. ACS Catal. 1, 629–635 (2011)

    Article  Google Scholar 

  60. Mukri, B.D., Dutta, G., Waghmare, U.V., Hegde, M.S.: Activation of Lattice Oxygen of TiO2 by Pd2+ Ion: Correlation of Low-Temperature CO and Hydrocarbon Oxidation with Structure of Ti1–x PdxO2–x (x= 0.01–0.03). Chem. Mater. 24, 4491–4502 (2012)

    Article  Google Scholar 

  61. Delannoy, L., Fajerwerg, K., Lakshmanan, P., Potvin, C., Méthivier, C., Louis, C.: Supported gold catalysts for the decomposition of VOC: total oxidation of propene in low concentration as model reaction. Appl. Catal. B Environ. 94, 117–124 (2010)

    Article  Google Scholar 

  62. Torrente-Murciano, L., Gilbank, A., Puertolas, B., Garcia, T., Solsona, B., Chadwick, D.: Shapedependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons. Appl. Catal. B Environ. 132, 116–122 (2013)

    Article  Google Scholar 

  63. Liotta, L.F., Ousmane, M., Di Carlo, G., Pantaleo, G., Deganello, G., Marcì, G., Retailleau, L., Giroir-Fendler, A.: Total oxidation of propene at low temperature over Co3O4–CeO2 mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity. Appl. Catal. A Gen. 347, 81–88 (2008)

    Article  Google Scholar 

  64. Nascimento, L.F., Martins, R.F., Silva, R.F., Serra, O.A.: Catalytic combustion of soot over ceriazinc mixed oxides catalysts supported onto cordierite. J. Environ. Sci. 26, 694–701 (2014)

    Article  Google Scholar 

  65. Sun, M., Wang, L., Feng, B., Zhang, Z., Lu, G., Guo, Y.: The role of potassium in K/Co3O4 for soot combustion under loose contact. Catal. Today. 175, 100–105 (2011)

    Article  Google Scholar 

  66. Wang, Z., Jiang, Z., Shangguan, W.: Simultaneous catalytic removal of NOx and soot particulate over Co–Al mixed oxide catalysts derived from hydrotalcites. Catal. Commun. 8, 1659–1664 (2007)

    Article  Google Scholar 

  67. Liu, J., Zhao, Z., Wang, J., Xu, C., Duan, A., Jiang, G., Yang, Q.: The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion. Appl. Catal. B Environ. 84, 185–195 (2008)

    Article  Google Scholar 

  68. Harrison, P.G., Ball, I.K., Daniell, W., Lukinskas, P., Céspedes, M., Miró, E.E., Ulla, M.A.: Cobalt catalysts for the oxidation of diesel soot particulate. Chem. Eng. J. 95, 47–55 (2003)

    Article  Google Scholar 

  69. Sui, L., Yu, L.: Diesel soot oxidation catalyzed by Co-Ba-K catalysts: Evaluation of the performance of the catalysts. Chem. Eng. J. 142, 327–330 (2008)

    Article  Google Scholar 

  70. Dhakad, M., Mitshuhashi, T., Rayalu, S., Doggali, P., Bakardjiva, S., Subrt, J., Fino, D., Haneda, H., Labhsetwar, N.: Co3O4-CeO2 mixed oxide-based catalytic materials for diesel soot oxidation. Catal. Today. 132, 188–193 (2008)

    Article  Google Scholar 

  71. Atribak, I., Such-Basanez, I., Bueno-Lopez, A., García, A.G.: Catalytic activity of La-modified TiO2 for soot oxidation by O2. Catal. Commun. 8, 478–482 (2007)

    Article  Google Scholar 

  72. Oi-Uchisawa, J., Obuchi, A., Wang, S., Nanba, T., Ohi, A.: Catalytic performance of Pt/MOx loaded over SiC-DPF for soot oxidation. Appl. Catal. B Environ. 43, 117–129 (2003)

    Article  Google Scholar 

  73. Atribak, I., Such-Basáñez, I., Bueno-López, A., García, A.: Comparison of the catalytic activity of MO2 (M= Ti, Zr, Ce) for soot oxidation under NOx/O2. J. Catal. 250, 75–84 (2007)

    Article  Google Scholar 

  74. Oi-Uchisawa, J., Wang, S., Nanba, T., Ohi, A., Obuchi, A.: Improvement of Pt catalyst for soot oxidation using mixed oxide as a support. Appl. Catal. B Environ. 44, 207–215 (2003)

    Article  Google Scholar 

  75. Bensaid, S., Russo, N., Fino, D.: CeO2 catalysts with fibrous morphology for soot oxidation: The importance of the soot-catalyst contact conditions. Catal. Today. 216, 57–63 (2013)

    Article  Google Scholar 

  76. Harada, K., Oishi, T., Hamamoto, S., Ishihara, T.: Lattice oxygen activity in Pr-and La-doped CeO2 for low-temperature soot oxidation. J. Phys. Chem. C. 118, 559–568 (2013)

    Article  Google Scholar 

  77. Shimizu, K., Kawachi, H., Satsuma, A.: Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst. Appl. Catal. B Environ. 96, 169–175 (2010)

    Article  Google Scholar 

  78. Katta, L., Sudarsanam, P., Thrimurthulu, G., Reddy, B.M.: Doped nanosized ceria solid solutions for low temperature soot oxidation: Zirconium versus lanthanum promoters. Appl. Catal. B Environ. 101, 101–108 (2010)

    Article  Google Scholar 

  79. Wei, Y., Zhao, Z., Liu, J., Xu, C., Jiang, G., Duan, A.: Design and Synthesis of 3D Ordered Macroporous CeO2-Supported Pt@ CeO2-δ Core–Shell Nanoparticle Materials for Enhanced Catalytic Activity of Soot Oxidation. Small. 9, 3957–3963 (2013)

    Article  Google Scholar 

  80. Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doǧan, S., Avrutin, V., Cho, S.J., Morko, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 1–103 (2005)

    Article  Google Scholar 

  81. Xiao, W., Guo, Y., Ren, Z., Wrobel, G., Ren, Z., Lu, T., Gao, P.X.: Mechanical-agitation-assisted growth of large-scale and uniform ZnO nanorod arrays within 3D multichannel monolithic substrates. Cryst. Growth Des. 13, 3657–3664 (2013)

    Article  Google Scholar 

  82. Ren, Z., Guo, Y., Zhang, Z., Liu, C., Gao, P.-X.: Nonprecious catalytic honeycombs structured with three dimensional hierarchical Co3O4 nano-arrays for high performance nitric oxide oxidation. J. Mater. Chem. A. 1, 9897–9906 (2013)

  83. Asano, K., Ohnishi, C., Iwamoto, S., Shioya, Y., Inoue, M.: Potassium-doped Co3O4 catalyst for direct decomposition of N2O. Appl. Catal. B Environ. 78, 242–249 (2008)

    Article  Google Scholar 

  84. Ren, Z., Botu, V., Wang, S., Meng, Y., Song, W., Guo, Y., Ramprasad, R., Suib, S.L., Gao, P.-X.: Monolithically Integrated Spinel MxCo3−xO4 (M=Co, Ni, Zn) Nanoarray Catalysts: Scalable Synthesis and Cation Manipulation for Tunable Low-Temperature CH 4 and CO Oxidation. Angew. Chemie Int. Ed. 53, 7223–7227 (2014)

    Article  Google Scholar 

  85. Guo, Y., Liu, G., Ren, Z., Piyadasa, A., Gao, P.-X.: Single crystalline brookite titanium dioxide nanorod arrays rooted on ceramic monoliths: a hybrid nanocatalyst support with ultra-high surface area and thermal stability. CrystEngComm. 15, 8345–8352 (2013)

  86. Cargnello, M., Jaen, J.J.D., Garrido, J.C.H., Bakhmutsky, K., Montini, T., Gamez, J.J.C., Gorte, R.J., Fornasiero, P.: Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3. Science. 337, 713–717 (2012).

  87. Fu, Q., Saltsburg, H., Flytzani-Stephanopoulos, M.: Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science. 301, 935–938 (2003)

    Article  Google Scholar 

  88. Jones, J., Xiong, H., DeLaRiva, A.T., Peterson, E.J., Pham, H., Challa, S.R., Qi, G., Oh, S., Wiebenga, M.H., Pereira Hernández, X.I., Wang, Y., Datye, A.K.: Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science. 353, 150–154 (2016).

  89. Li, G.R., Qu, D.L., Yu, X.L., Tong, Y.X.: Microstructural evolution of CeO2 from porous structures to clusters of nanosheet arrays assisted by gas bubbles via electrodeposition. Langmuir. 24, 4254–4259 (2008)

    Article  Google Scholar 

  90. Lu, X., Zheng, D., Gan, J., Liu, Z., Liang, C., Liu, P., Tong, Y.: Porous CeO2 nanowires/nanowire arrays: electrochemical synthesis and application in water treatment. J. Mater. Chem. 20, 7118–7122 (2010)

  91. Ren, Z., Wu, Z., Song, W., Xiao, W., Guo, Y., Ding, J., Suib, S.L., Gao, P.-X.: Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability. Appl. Catal. B Environ. 180, 150–160 (2016)

    Article  Google Scholar 

  92. Guo, Y., Zhang, Z., Ren, Z., Gao, H., Gao, P.: Synthesis, characterization and CO oxidation of TiO2/(La , Sr)MnO3 composite nanorod array. Catal. Today. 184, 178–183 (2012)

    Article  Google Scholar 

  93. Wang, S., Ren, Z., Song, W., Guo, Y., Zhang, M., Suib, S.L., Gao, P.-X.: ZnO/perovskite core–shell nanorod array based monolithic catalysts with enhanced propane oxidation and material utilization efficiency at low temperature. Catal. Today. 258, 549–555 (2015)

    Article  Google Scholar 

  94. Törncrona, A., Skoglundh, M., Thormählen, P., Fridell, E., Jobson, E.: Low temperature catalytic activity of cobalt oxide and ceria promoted Pt and Pd : -influence of pretreatment and gas composition. Appl. Catal. B, Environ. 14, 131–146 (1997)

    Article  Google Scholar 

  95. Binder, A.J., Toops, T.J., Unocic, R.R., Ii, J.E.P., Dai, S.: Low-Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition Angewandte. Angew.Chem. Int. Ed. 54, 13263–13267 (2015)

  96. Liu, Z., Chai, S., Binder, A., Li, Y., Ji, L., Dai, S.: Applied Catalysis A : General Influence of calcination temperature on the structure and catalytic performance of CuOx -CoOy -CeO2 ternary mixed oxide for CO oxidation. Appl. Catal. A Gen. 451, 282–288 (2013)

    Article  Google Scholar 

  97. Dadi, R.K., Luss, D., Balakotaiah, V.: Bifurcation features of mixtures containing CO and hydrocarbons in diesel oxidation catalyst. Chem. Eng. J. 304, 941–952 (2016)

    Article  Google Scholar 

  98. Hu, L., Peng, Q., Li, Y.: Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal. J. Am. Chem. Soc. 130, 16136–16137 (2008).

  99. Feng, Y., Rao, P.M., Kim, D.R., Zheng, X.: Methane oxidation over catalytic copper oxides nanowires. Proc. Combust. Inst. 33, 3169–3175 (2011)

    Article  Google Scholar 

  100. Meadowcroft, D.B.: Low-Cost Oxygen Electrode Material. Nature. 226, 847–848 (1970)

    Google Scholar 

  101. Libby, W.F.: Promising Catalyst for Auto Exhaust. Science. 171, 499–500 (1971).

  102. Nitadori, T., Misono, M.: Catalytic properties of La1−xA′xFeO3(A′ = Sr,Ce) and La1−xCexCoO3. J. Catal. 93, 459–466 (1985)

    Article  Google Scholar 

  103. Nishihata, Y., Mizuki, J., Akao, T., Tanaka, H., Uenishi, M., Kimura, M., Okamoto, T., Hamada, N.: Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature. 418, 164–167 (2002)

    Article  Google Scholar 

  104. Cimino, S., Pirone, R., Russo, G.: Thermal Stability of Perovskite-Based Monolithic Reactors in the Catalytic Combustion of Methane. Ind. Eng. Chem. Res. 40, 80–85 (2001)

    Article  Google Scholar 

  105. Kim, C.H., Qi, G., Dahlberg, K., Li, W.: Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science. 327, 1624–1627 (2010)

    Article  Google Scholar 

  106. Chen, J., Shen, M., Wang, X., Wang, J., Su, Y., Zhao, Z.: Catalytic performance of NO oxidation over LaMeO3 (Me = Mn, Fe, Co ) perovskite prepared by the sol–gel method. Catal. Commun. 37, 105–108 (2013)

    Article  Google Scholar 

  107. Jian, D., Gao, P.-X., Cai, W., Allimi, B.S., Pamir Alpay, S., Ding, Y., Wang, Z.L., Brooks, C.: Synthesis, characterization, and photocatalytic properties of ZnO/(La,Sr)CoO3 composite nanorod arrays. J. Mater. Chem. 19, 970–975 (2009)

    Article  Google Scholar 

  108. Levasseur, B., Kaliaguine, S.: Methanol oxidation on LaBO3 (B = Co, Mn, Fe) perovskite-type catalysts prepared by reactive grinding. Appl. Catal. A Gen. 343, 29–38 (2008)

    Article  Google Scholar 

  109. Doornkamp, C., Ponec, V.: The universal character of the Mars and Van Krevelen mechanism. J. Mol. Catal. A Chem. 162, 19–32 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the US Department of Energy (Award # DE-EE0006854) and the US National Science Foundation (Award # CBET-1344792).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu-Xian Gao.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, S., Tang, W., Guo, Y. et al. Understanding low temperature oxidation activity of nanoarray-based monolithic catalysts: from performance observation to structural and chemical insights. Emiss. Control Sci. Technol. 3, 18–36 (2017). https://doi.org/10.1007/s40825-016-0054-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-016-0054-y

Keywords

  • Monolithic catalyst
  • Nanoarrays
  • Automobile emission control
  • Low temperature oxidation
  • Catalyst structural parameters
  • Rational catalyst design