Abstract
Monolithic catalysts have been widely used in automotive, chemical, and energy relevant industries. Nanoarray-based monolithic catalysts have been developed, demonstrating high catalyst utilization efficiency and good thermal/mechanical robustness. Compared with the conventional washcoat-based monolithic catalysts, they have shown advances in precise and optimum microstructure control and feasibility in correlating materials structure with properties. Recently, the nanoarray-based monolithic catalysts have been studied for low temperature oxidation of automotive engine exhaust and exhibited interesting and promising catalytic activities. This review focuses on discussing the key structural parameters of nanoarray catalyst that affect the catalytic performance from the following aspects: (1) geometric shape and crystal planes, (2) guest atom doping and defects, (3) array size and size-assisted active species loading, and (4) the synergy effect of metal oxide in composite nanoarrays. Prior to the discussion, an overview of the current status of synthesis and development of the nanoarray-based monolithic catalysts is introduced. The performance of these materials in low temperature simulated engine exhaust oxidation is also demonstrated. We hope this review will elucidate the science and chemistry behind the good oxidation performance of the nanoarray-based monolithic catalysts and serve as a timely and useful research guide for rational design and further improvement of the nanoarray-based monolithic catalysts for automobile emission control.
This is a preview of subscription content, access via your institution.


















References
Lundberg, B., Sjöblom, J., Johansson, Å., Westerberg, B., Creaser, D.: DOC modeling combining kinetics and mass transfer using inert washcoat layers. Appl. Catal. B Environ. 191, 116–129 (2016)
Twigg, M.V.: Progress and future challenges in controlling automotive exhaust gas emissions. Appl. Catal. B Environ. 70, 2–15 (2007)
Herreros, J.M., Gill, S.S., Lefort, I., Tsolakis, A., Millington, P., Moss, E.: Enhancing the low temperature oxidation performance over a Pt and a Pt-Pd diesel oxidation catalyst. Appl. Catal. B Environ. 147, 835–841 (2014)
Epling, W.S., Campbell, L.E., Yezerets, A., Currier, N.W., Parks, J.E.: Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts. Catal. Rev. Sci. Eng. 46, 163–245 (2004)
Matti Maricq, M.: Chemical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci. 38, 1079–1118 (2007)
Zammit, M., Dimaggio, C., Kim, C., Lambert, C., Muntean, G., Peden, C., Parks, J., Howden, K.: Future automotive aftertreatment solutions: the 150 °C challenge workshop report. US DRIVE Work shop (2012)
Yamamoto, H., Uchida, H.: Oxidation of Methane over Pt and Pd Supported on Alumina in Lean-Burn Natural-Gas Engine Exhaust. Catal. Today. 45, 147–151 (1998)
Windeatt, J., Brady, G., Usher, P., Li, H., Hadavi, A.: Real world cold start emissions from a diesel vehicle. In: SAE Technical Paper. SAE Technical Paper 2012-01-1075 (2012)
Roberts, A., Brooks, R., Shipway, P.: Internal combustion engine cold-start efficiency : A review of the problem, causes and potential solutions. Energy Convers. Manag. 82, 327–350 (2014)
Elsom, D.: Smog alert: managing urban air quality. Earthscan (2013)
Johnson, T. V: Diesel emission control in review. SAE Int. J. Fuels Lubr. 2, 1–12 (2009)
Tarascon, J.-M., Poizot, P., Laruelle, S., Grugeon, S., Dupont, L.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 407, 496–499 (2000)
Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., Lieber, C.M.: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature. 415, 617–620 (2002)
Wang, S., Ren, Z., Guo, Y., Gao, P.-X.: Nano-array integrated monolithic devices: toward rational materials design and multi-functional performance by scalable nanostructures assembly. CrystEngComm. 18, 2980–2993 (2016)
Liu, Y., Harold, M.P., Luss, D.: Coupled NOx storage and reduction and selective catalytic reduction using dual-layer monolithic catalysts. Appl. Catal. B Environ. 121–122, 239–251 (2012)
Ding, B., Wang, M., Wang, X., Yu, J., Sun, G.: Electrospun nanomaterials for ultrasensitive sensors. Mater. Today. 13, 16–27 (2010)
Zhao, X., Lv, L., Pan, B., Zhang, W., Zhang, S., Zhang, Q.: Polymer-supported nanocomposites for environmental application: A review. Chem. Eng. J. 170, 381–394 (2011)
Guo, Y., Ren, Z., Xiao, W., Liu, C., Sharma, H., Gao, H., Mhadeshwar, A., Gao, P.X.: Robust 3-D configurated metal oxide nano-array based monolithic catalysts with ultrahigh materials usage efficiency and catalytic performance tunability. Nano Energy. 2, 873–881 (2013)
Zhang, Z., Gao, H., Cai, W., Liu, C., Guo, Y., Gao, P.-X.: In situ TPR removal: a generic method for fabricating tubular array devices with mechanical and structural soundness, and functional robustness on various substrates. J. Mater. Chem. 22, 23098–23105 (2012)
Gao, P.X., Ding, Y., Mai, W., Hughes, W.L., Lao, C., Wang, Z.L.: Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science. 309, 1700–1704 (2005)
Gao, P.X., Ding, Y., Wang, Z.L.: Electronic transport in superlattice-structured ZnO nanohelix. Nano Lett. 9, 137–143 (2009)
Yang, Q., Lu, Z., Liu, J., Lei, X., Chang, Z., Luo, L., Sun, X.: Metal oxide and hydroxide nanoarrays: Hydrothermal synthesis and applications as supercapacitors and nanocatalysts. Prog. Nat. Sci. Mater. Int. 23, 351–366 (2013)
Li, P., Jin, Z., Yang, J., Jin, Y., Xiao, D.: Highly Active 3D-Nanoarray-Supported Oxygen-Evolving Electrode Generated From Cobalt-Phytate Nanoplates. Chem. Mater. 28, 153–161 (2016)
Li, Y., Hasin, P., Wu, Y.: NixCo3−xO4 Nanowire Arrays for Electrocatalytic Oxygen Evolution. Adv. Mater. 22, 1926–1929 (2010)
Liu, J., Zhou, W., Lai, L., Yang, H., Hua Lim, S., Zhen, Y., Yu, T., Shen, Z., Lin, J.: Three dimensionals α-Fe2O3/polypyrrole (Ppy) nanoarray as anode for micro lithium ion batteries. Nano Energy. 2, 726–732 (2013)
Farrauto, R.J., Voss, K.E.: Monolithic diesel oxidation catalysts. Appl. Catal. B Environ. 10, 29–51 (1996)
Winkler, A., Ferri, D., Aguirre, M.: The influence of chemical and thermal aging on the catalytic activity of a monolithic diesel oxidation catalyst. Appl. Catal. B Environ. 93, 177–184 (2009)
Ren, Z., Guo, Y., Gao, P.-X.: Nano-array based monolithic catalysts: Concept, rational materials design and tunable catalytic performance. Catal. Today. 258, 441–453 (2015)
Wang, Q., Park, S.Y., Duan, L., Chung, J.S.: Activity, stability and characterization of NO oxidation catalyst Co/KxTi2O5. Appl. Catal. B Environ. 85, 10–16 (2008)
Wang, Q., Park, S.Y., Choi, J.S., Chung, J.S.: Co/KxTi2O5 catalysts prepared by ion exchange method for NO oxidation to NO2. Appl. Catal. B Environ. 79, 101–107 (2008)
Haneda, M., Kintaichi, Y., Bion, N., Hamada, H.: Alkali metal-doped cobalt oxide catalysts for NO decomposition. Appl. Catal. B Environ. 46, 473–482 (2003)
Irfan, M.F., Goo, J.H., Kim, S.D.: Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process. Appl. Catal. B Environ. 78, 267–274 (2008)
Sofianou, M.-V., Trapalis, C., Psycharis, V., Boukos, N., Vaimakis, T., Yu, J., Wang, W.: Study of TiO2 anatase nano and microstructures with dominant {001} facets for NO oxidation. Environ. Sci. Pollut. Res. 19, 3719–3726 (2012)
Mguig, B., Calatayud, M., Minot, C.: Theoretical investigation of NO oxidation over TiO2-anatase. Surf. Rev. Lett. 10, 175–182 (2003)
Tang, N., Liu, Y., Wang, H., Wu, Z.: Mechanism Study of NO Catalytic Oxidation over MnOx/TiO2 Catalysts. J. Phys. Chem. C. 115, 8214–8220 (2011)
Leistner, K., Nicolle, A., Da Costa, P.: Modelling the kinetics of NO oxidation and NOx storage over platinum, ceria and ceria zirconia. Appl. Catal. B Environ. 111, 415–423 (2012)
Mingshan, C.U.I., Yuan, L.I., Xinquan, W., Jun, W., Meiqing, S.: Effect of preparation method on MnO x-CeO2 catalysts for NO oxidation. J. Rare Earths. 31, 572–576 (2013)
Lin, F., Wu, X., Weng, D.: Effect of barium loading on CuOx–CeO2 catalysts: NOx storage capacity. NO oxidation ability and soot oxidation activity. Catal. today. 175, 124–132 (2011)
Manzoli, M., Chiorino, A., Boccuzzi, F.: Interface species and effect of hydrogen on their amount in the CO oxidation on Au/ZnO. Appl. Catal. B Environ. 52, 259–266 (2004)
Carabineiro, S.A.C., Machado, B.F., Bacsa, R.R., Serp, P., Dražić, G., Faria, J.L., Figueiredo, J.L.: Catalytic performance of Au/ZnO nanocatalysts for CO oxidation. J. Catal. 273, 191–198 (2010)
Liu, X., Liu, M.-H., Luo, Y.-C., Mou, C.-Y., Lin, S.D., Cheng, H., Chen, J.-M., Lee, J.-F., Lin, T.-S.: Strong metal–support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 134, 10251–10258 (2012)
Jia, C.-J., Schwickardi, M., Weidenthaler, C., Schmidt, W., Korhonen, S., Weckhuysen, B.M., Schüth, F.: Co3O4–SiO2 nanocomposite: a very active catalyst for CO oxidation with unusual catalytic behavior. J. Am. Chem. Soc. 133, 11279–11288 (2011)
Hu, L., Sun, K., Peng, Q., Xu, B., Li, Y.: Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 3, 363–368 (2010)
Xie, X., Li, Y., Liu, Z.-Q., Haruta, M., Shen, W.: Low-temperature oxidation of CO catalysed by Co(3)O(4) nanorods. Nature. 458, 746–749 (2009)
Maeda, Y., Iizuka, Y., Kohyama, M.: Generation of oxygen vacancies at a Au/TiO2 perimeter interface during CO oxidation detected by in situ electrical conductance measurement. J. Am. Chem. Soc. 135, 906–909 (2013)
Bonanni, S., Aït-Mansour, K., Harbich, W., Brune, H.: Effect of the TiO2 reduction state on the catalytic CO oxidation on deposited size-selected Pt clusters. J. Am. Chem. Soc. 134, 3445–3450 (2012)
Green, I.X., Tang, W., Neurock, M., Yates, J.T.: Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science. 333, 736–739 (2011)
Widmann, D., Behm, R.J.: Active oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity. Angew. Chemie Int. Ed. 50, 10241–10245 (2011)
Li, Z.-X., Li, L.-L., Yuan, Q., Feng, W., Xu, J., Sun, L.-D., Song, W.-G., Yan, C.-H.: Sustainable and facile route to nearly monodisperse spherical aggregates of CeO2 nanocrystals with ionic liquids and their catalytic activities for CO oxidation. J. Phys. Chem. C. 112, 18405–18411 (2008)
Ke, J., Zhu, W., Jiang, Y., Si, R., Wang, Y.-J., Li, S.-C., Jin, C., Liu, H., Song, W.-G., Yan, C.-H.: Strong Local Coordination Structure Effects on Subnanometer PtOx Clusters over CeO2 Nanowires Probed by Low-Temperature CO Oxidation. ACS Catal. 5, 5164–5173 (2015)
Chen, S., Luo, L., Jiang, Z., Huang, W.: Size-dependent reaction pathways of low-temperature CO oxidation on Au/CeO2 catalysts. ACS Catal. 5, 1653–1662 (2015)
Kim, K.-J., Ahn, H.-G.: Complete oxidation of toluene over bimetallic Pt–Au catalysts supported on ZnO/Al2O3. Appl. Catal. B Environ. 91, 308–318 (2009)
Wu, H., Wang, L., Zhang, J., Shen, Z., Zhao, J.: Catalytic oxidation of benzene, toluene and pxylene over colloidal gold supported on zinc oxide catalyst. Catal. Commun. 12, 859–865 (2011)
Liu, Q., Wang, L.-C., Chen, M., Cao, Y., He, H.-Y., Fan, K.-N.: Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane. J. Catal. 263, 104–113 (2009)
Zhu, Z., Lu, G., Zhang, Z., Guo, Y., Guo, Y., Wang, Y.: Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: effect of the preparation method. ACS Catal. 3, 1154–1164 (2013)
Luo, J.-Y., Meng, M., Zha, Y.-Q., Guo, L.-H.: Identification of the active sites for CO and C3H8 total oxidation over nanostructured CuO− CeO2 and Co3O4− CeO2 catalysts. J. Phys. Chem. C. 112, 8694–8701 (2008)
Yao, Y.-F.Y.: The oxidation of hydrocarbons and CO over metal oxides: III. Co3O4. J. Catal. 33, 108–122 (1974)
Taylor, M.N., Zhou, W., Garcia, T., Solsona, B., Carley, A.F., Kiely, C.J., Taylor, S.H.: Synergy between tungsten and palladium supported on titania for the catalytic total oxidation of propane. J. Catal. 285, 103–114 (2012)
Enterkin, J.A., Setthapun, W., Elam, J.W., Christensen, S.T., Rabuffetti, F.A., Marks, L.D., Stair, P.C., Poeppelmeier, K.R., Marshall, C.L.: Propane oxidation over Pt/SrTiO3 nanocuboids. ACS Catal. 1, 629–635 (2011)
Mukri, B.D., Dutta, G., Waghmare, U.V., Hegde, M.S.: Activation of Lattice Oxygen of TiO2 by Pd2+ Ion: Correlation of Low-Temperature CO and Hydrocarbon Oxidation with Structure of Ti1–x PdxO2–x (x= 0.01–0.03). Chem. Mater. 24, 4491–4502 (2012)
Delannoy, L., Fajerwerg, K., Lakshmanan, P., Potvin, C., Méthivier, C., Louis, C.: Supported gold catalysts for the decomposition of VOC: total oxidation of propene in low concentration as model reaction. Appl. Catal. B Environ. 94, 117–124 (2010)
Torrente-Murciano, L., Gilbank, A., Puertolas, B., Garcia, T., Solsona, B., Chadwick, D.: Shapedependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons. Appl. Catal. B Environ. 132, 116–122 (2013)
Liotta, L.F., Ousmane, M., Di Carlo, G., Pantaleo, G., Deganello, G., Marcì, G., Retailleau, L., Giroir-Fendler, A.: Total oxidation of propene at low temperature over Co3O4–CeO2 mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity. Appl. Catal. A Gen. 347, 81–88 (2008)
Nascimento, L.F., Martins, R.F., Silva, R.F., Serra, O.A.: Catalytic combustion of soot over ceriazinc mixed oxides catalysts supported onto cordierite. J. Environ. Sci. 26, 694–701 (2014)
Sun, M., Wang, L., Feng, B., Zhang, Z., Lu, G., Guo, Y.: The role of potassium in K/Co3O4 for soot combustion under loose contact. Catal. Today. 175, 100–105 (2011)
Wang, Z., Jiang, Z., Shangguan, W.: Simultaneous catalytic removal of NOx and soot particulate over Co–Al mixed oxide catalysts derived from hydrotalcites. Catal. Commun. 8, 1659–1664 (2007)
Liu, J., Zhao, Z., Wang, J., Xu, C., Duan, A., Jiang, G., Yang, Q.: The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion. Appl. Catal. B Environ. 84, 185–195 (2008)
Harrison, P.G., Ball, I.K., Daniell, W., Lukinskas, P., Céspedes, M., Miró, E.E., Ulla, M.A.: Cobalt catalysts for the oxidation of diesel soot particulate. Chem. Eng. J. 95, 47–55 (2003)
Sui, L., Yu, L.: Diesel soot oxidation catalyzed by Co-Ba-K catalysts: Evaluation of the performance of the catalysts. Chem. Eng. J. 142, 327–330 (2008)
Dhakad, M., Mitshuhashi, T., Rayalu, S., Doggali, P., Bakardjiva, S., Subrt, J., Fino, D., Haneda, H., Labhsetwar, N.: Co3O4-CeO2 mixed oxide-based catalytic materials for diesel soot oxidation. Catal. Today. 132, 188–193 (2008)
Atribak, I., Such-Basanez, I., Bueno-Lopez, A., García, A.G.: Catalytic activity of La-modified TiO2 for soot oxidation by O2. Catal. Commun. 8, 478–482 (2007)
Oi-Uchisawa, J., Obuchi, A., Wang, S., Nanba, T., Ohi, A.: Catalytic performance of Pt/MOx loaded over SiC-DPF for soot oxidation. Appl. Catal. B Environ. 43, 117–129 (2003)
Atribak, I., Such-Basáñez, I., Bueno-López, A., García, A.: Comparison of the catalytic activity of MO2 (M= Ti, Zr, Ce) for soot oxidation under NOx/O2. J. Catal. 250, 75–84 (2007)
Oi-Uchisawa, J., Wang, S., Nanba, T., Ohi, A., Obuchi, A.: Improvement of Pt catalyst for soot oxidation using mixed oxide as a support. Appl. Catal. B Environ. 44, 207–215 (2003)
Bensaid, S., Russo, N., Fino, D.: CeO2 catalysts with fibrous morphology for soot oxidation: The importance of the soot-catalyst contact conditions. Catal. Today. 216, 57–63 (2013)
Harada, K., Oishi, T., Hamamoto, S., Ishihara, T.: Lattice oxygen activity in Pr-and La-doped CeO2 for low-temperature soot oxidation. J. Phys. Chem. C. 118, 559–568 (2013)
Shimizu, K., Kawachi, H., Satsuma, A.: Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst. Appl. Catal. B Environ. 96, 169–175 (2010)
Katta, L., Sudarsanam, P., Thrimurthulu, G., Reddy, B.M.: Doped nanosized ceria solid solutions for low temperature soot oxidation: Zirconium versus lanthanum promoters. Appl. Catal. B Environ. 101, 101–108 (2010)
Wei, Y., Zhao, Z., Liu, J., Xu, C., Jiang, G., Duan, A.: Design and Synthesis of 3D Ordered Macroporous CeO2-Supported Pt@ CeO2-δ Core–Shell Nanoparticle Materials for Enhanced Catalytic Activity of Soot Oxidation. Small. 9, 3957–3963 (2013)
Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doǧan, S., Avrutin, V., Cho, S.J., Morko, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 1–103 (2005)
Xiao, W., Guo, Y., Ren, Z., Wrobel, G., Ren, Z., Lu, T., Gao, P.X.: Mechanical-agitation-assisted growth of large-scale and uniform ZnO nanorod arrays within 3D multichannel monolithic substrates. Cryst. Growth Des. 13, 3657–3664 (2013)
Ren, Z., Guo, Y., Zhang, Z., Liu, C., Gao, P.-X.: Nonprecious catalytic honeycombs structured with three dimensional hierarchical Co3O4 nano-arrays for high performance nitric oxide oxidation. J. Mater. Chem. A. 1, 9897–9906 (2013)
Asano, K., Ohnishi, C., Iwamoto, S., Shioya, Y., Inoue, M.: Potassium-doped Co3O4 catalyst for direct decomposition of N2O. Appl. Catal. B Environ. 78, 242–249 (2008)
Ren, Z., Botu, V., Wang, S., Meng, Y., Song, W., Guo, Y., Ramprasad, R., Suib, S.L., Gao, P.-X.: Monolithically Integrated Spinel MxCo3−xO4 (M=Co, Ni, Zn) Nanoarray Catalysts: Scalable Synthesis and Cation Manipulation for Tunable Low-Temperature CH 4 and CO Oxidation. Angew. Chemie Int. Ed. 53, 7223–7227 (2014)
Guo, Y., Liu, G., Ren, Z., Piyadasa, A., Gao, P.-X.: Single crystalline brookite titanium dioxide nanorod arrays rooted on ceramic monoliths: a hybrid nanocatalyst support with ultra-high surface area and thermal stability. CrystEngComm. 15, 8345–8352 (2013)
Cargnello, M., Jaen, J.J.D., Garrido, J.C.H., Bakhmutsky, K., Montini, T., Gamez, J.J.C., Gorte, R.J., Fornasiero, P.: Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3. Science. 337, 713–717 (2012).
Fu, Q., Saltsburg, H., Flytzani-Stephanopoulos, M.: Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science. 301, 935–938 (2003)
Jones, J., Xiong, H., DeLaRiva, A.T., Peterson, E.J., Pham, H., Challa, S.R., Qi, G., Oh, S., Wiebenga, M.H., Pereira Hernández, X.I., Wang, Y., Datye, A.K.: Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science. 353, 150–154 (2016).
Li, G.R., Qu, D.L., Yu, X.L., Tong, Y.X.: Microstructural evolution of CeO2 from porous structures to clusters of nanosheet arrays assisted by gas bubbles via electrodeposition. Langmuir. 24, 4254–4259 (2008)
Lu, X., Zheng, D., Gan, J., Liu, Z., Liang, C., Liu, P., Tong, Y.: Porous CeO2 nanowires/nanowire arrays: electrochemical synthesis and application in water treatment. J. Mater. Chem. 20, 7118–7122 (2010)
Ren, Z., Wu, Z., Song, W., Xiao, W., Guo, Y., Ding, J., Suib, S.L., Gao, P.-X.: Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability. Appl. Catal. B Environ. 180, 150–160 (2016)
Guo, Y., Zhang, Z., Ren, Z., Gao, H., Gao, P.: Synthesis, characterization and CO oxidation of TiO2/(La , Sr)MnO3 composite nanorod array. Catal. Today. 184, 178–183 (2012)
Wang, S., Ren, Z., Song, W., Guo, Y., Zhang, M., Suib, S.L., Gao, P.-X.: ZnO/perovskite core–shell nanorod array based monolithic catalysts with enhanced propane oxidation and material utilization efficiency at low temperature. Catal. Today. 258, 549–555 (2015)
Törncrona, A., Skoglundh, M., Thormählen, P., Fridell, E., Jobson, E.: Low temperature catalytic activity of cobalt oxide and ceria promoted Pt and Pd : -influence of pretreatment and gas composition. Appl. Catal. B, Environ. 14, 131–146 (1997)
Binder, A.J., Toops, T.J., Unocic, R.R., Ii, J.E.P., Dai, S.: Low-Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition Angewandte. Angew.Chem. Int. Ed. 54, 13263–13267 (2015)
Liu, Z., Chai, S., Binder, A., Li, Y., Ji, L., Dai, S.: Applied Catalysis A : General Influence of calcination temperature on the structure and catalytic performance of CuOx -CoOy -CeO2 ternary mixed oxide for CO oxidation. Appl. Catal. A Gen. 451, 282–288 (2013)
Dadi, R.K., Luss, D., Balakotaiah, V.: Bifurcation features of mixtures containing CO and hydrocarbons in diesel oxidation catalyst. Chem. Eng. J. 304, 941–952 (2016)
Hu, L., Peng, Q., Li, Y.: Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal. J. Am. Chem. Soc. 130, 16136–16137 (2008).
Feng, Y., Rao, P.M., Kim, D.R., Zheng, X.: Methane oxidation over catalytic copper oxides nanowires. Proc. Combust. Inst. 33, 3169–3175 (2011)
Meadowcroft, D.B.: Low-Cost Oxygen Electrode Material. Nature. 226, 847–848 (1970)
Libby, W.F.: Promising Catalyst for Auto Exhaust. Science. 171, 499–500 (1971).
Nitadori, T., Misono, M.: Catalytic properties of La1−xA′xFeO3(A′ = Sr,Ce) and La1−xCexCoO3. J. Catal. 93, 459–466 (1985)
Nishihata, Y., Mizuki, J., Akao, T., Tanaka, H., Uenishi, M., Kimura, M., Okamoto, T., Hamada, N.: Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature. 418, 164–167 (2002)
Cimino, S., Pirone, R., Russo, G.: Thermal Stability of Perovskite-Based Monolithic Reactors in the Catalytic Combustion of Methane. Ind. Eng. Chem. Res. 40, 80–85 (2001)
Kim, C.H., Qi, G., Dahlberg, K., Li, W.: Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science. 327, 1624–1627 (2010)
Chen, J., Shen, M., Wang, X., Wang, J., Su, Y., Zhao, Z.: Catalytic performance of NO oxidation over LaMeO3 (Me = Mn, Fe, Co ) perovskite prepared by the sol–gel method. Catal. Commun. 37, 105–108 (2013)
Jian, D., Gao, P.-X., Cai, W., Allimi, B.S., Pamir Alpay, S., Ding, Y., Wang, Z.L., Brooks, C.: Synthesis, characterization, and photocatalytic properties of ZnO/(La,Sr)CoO3 composite nanorod arrays. J. Mater. Chem. 19, 970–975 (2009)
Levasseur, B., Kaliaguine, S.: Methanol oxidation on LaBO3 (B = Co, Mn, Fe) perovskite-type catalysts prepared by reactive grinding. Appl. Catal. A Gen. 343, 29–38 (2008)
Doornkamp, C., Ponec, V.: The universal character of the Mars and Van Krevelen mechanism. J. Mol. Catal. A Chem. 162, 19–32 (2000)
Acknowledgements
The authors are grateful for the financial support from the US Department of Energy (Award # DE-EE0006854) and the US National Science Foundation (Award # CBET-1344792).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no competing interests.
Additional information
This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Rights and permissions
About this article
Cite this article
Du, S., Tang, W., Guo, Y. et al. Understanding low temperature oxidation activity of nanoarray-based monolithic catalysts: from performance observation to structural and chemical insights. Emiss. Control Sci. Technol. 3, 18–36 (2017). https://doi.org/10.1007/s40825-016-0054-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40825-016-0054-y
Keywords
- Monolithic catalyst
- Nanoarrays
- Automobile emission control
- Low temperature oxidation
- Catalyst structural parameters
- Rational catalyst design