Skip to main content

Advertisement

Log in

Compact or Sprawling Cities: Has the Sparing-Sharing Framework Yielded an Ecological Verdict?

  • REVIEW
  • Published:
Current Landscape Ecology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Global urban land area is growing faster than the urban population, raising concerns that sprawling, low-density development will reduce biodiversity and human wellbeing. The sparing-sharing framework, adapted from agroecology, provides one approach to assessing alternative urban growth patterns. It compares ecological outcomes in landscapes matched for total population and land area, but differing in configuration: land sparing (partitioned between densely urbanized and undeveloped areas) or land sharing (low-density development throughout). We reviewed the urban sparing-sharing literature since 2010 and recovered 15 studies conducted in 22 cities on four continents.

Recent Findings

Collectively, studies assessed effects of alternative development patterns on 296 species, 21 community metrics (such as species richness), and 26 indicators of ecosystem services or processes (such as carbon sequestration). Sparing was the best option for 51% of individual species; 43% of community metrics; and 27% of ecosystem service indicators.

Summary

Existing ecological research does not clearly favor one pattern or the other, and new approaches are needed to facilitate decision making and ecological insight. Specifically, future work could (1) explicitly evaluate optimized urban development patterns across multiple competing priorities (such as providing housing, delivering ecosystem services, and protecting priority species), (2) tackle issues of spatial scale and connectivity that are often ambiguous in sparing-sharing research, and (3) improve geographical representation. These advances can be made while preserving the key insight of the framework–that choices between alternative landscape configurations are only meaningful when those landscapes are matched for total area and the level of human needs met.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data from this paper are available in the supplementary material.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. United Nations. World urbanization prospects: The 2018 Revision. New York: United Nations, Population Division; 2018.

    Book  Google Scholar 

  2. Gao J, O’Neill BC. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat Commun. 2020;11:1–12.

    Article  Google Scholar 

  3. Li X, Zhou Y, Eom J, Yu S, Asrar GR. Projecting global urban area growth through 2100 based on historical time series data and future shared socioeconomic pathways. Earth’s Future. 2019;7:351–62.

    Article  Google Scholar 

  4. Seto KC, Fragkias M, Güneralp B, Reilly MK. A meta-analysis of global urban land expansion. PLoS ONE. 2011;6: e23777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu Z, He C, Zhou Y, Wu J. How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion. Landscape Ecol. 2014;29:763–71.

    Article  Google Scholar 

  6. FAO. Food and Agriculture Organization of the United Nations, Statistical Database, Land Use Domain. 2021. https://www.fao.org/faostat/en/#data/RL. Accessed 4 May 2022.

  7. Gaston KJ. Biodiversity and extinction: species and people. Prog Physical Geogr. 2005;29:239–47.

    Article  Google Scholar 

  8. Güneralp B, Seto K. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ Res Lett. 2013;8: 014025.

    Article  Google Scholar 

  9. Kühn I, Brandl R, Klotz S. The flora of German cities is naturally species rich. Evol Ecol Res. 2004;6:749–64.

    Google Scholar 

  10. Cincotta RP, Wisnewski J, Engelman R. Human population in the biodiversity hotspots. Nature. 2000;404:990–2.

    Article  CAS  PubMed  Google Scholar 

  11. Luck GW. A review of the relationships between human population density and biodiversity. Biol Rev. 2007;82:607–45.

    Article  PubMed  Google Scholar 

  12. Soga M, Gaston KJ. Extinction of experience: the loss of human–nature interactions. Front Ecol Environ. 2016;14:94–101.

    Article  Google Scholar 

  13. Gaston KJ, Soga M. Extinction of experience: the need to be more specific. People Nat. 2020;2:575–81.

    Article  Google Scholar 

  14. Rook GA. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci USA. 2013;110:18360–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gaston KJ. Urban ecology. In: Gaston KJ, editor. Urban ecology. Oxford University Press; 2010. p. 1–9.

    Chapter  Google Scholar 

  16. Dearborn DC, Kark S. Motivations for conserving urban biodiversity. Conserv Biol. 2010;24:432–40.

    Article  PubMed  Google Scholar 

  17. Dunn RR, Gavin MC, Sanchez MC, Solomon JN. The pigeon paradox: dependence of global conservation on urban nature. Conserv Biol. 2006;20:1814–6.

    Article  PubMed  Google Scholar 

  18. Seto KC, Sánchez-Rodríguez R, Fragkias M. The new geography of contemporary urbanization and the environment. Annu Rev Environ Res. 2010;35:167–94.

    Article  Google Scholar 

  19. Marzluff JM, Bowman R, Donnelly R. A historical perspective on urban bird research: trends, terms, and approaches. In: Avian ecology and conservation in an urbanizing world. Springer; 2001. p. 1–17.

    Chapter  Google Scholar 

  20. Adams MA, Frank LD, Schipperijn J, Smith G, Chapman J, Christiansen LB, et al. International variation in neighborhood walkability, transit, and recreation environments using geographic information systems: the IPEN adult study. Int J Health Geogr. 2014;13:17. https://doi.org/10.1186/1476-072x-13-43.

    Article  Google Scholar 

  21. Schneider A, Woodcock CE. Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud. 2008;45:659–92.

    Article  Google Scholar 

  22. Güneralp B, Reba M, Hales BU, Wentz EA, Seto KC. Trends in urban land expansion, density, and land transitions from 1970 to 2010: a global synthesis. Environ Res Lett. 2020;15: 044015.

    Article  Google Scholar 

  23. Liu X, Huang Y, Xu X, Li X, Li X, Ciais P, et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat Sustain. 2020;3:564–70.

    Article  Google Scholar 

  24. Terando AJ, Costanza J, Belyea C, Dunn RR, McKerrow A, Collazo JA. The southern megalopolis: using the past to predict the future of urban sprawl in the southeast US. PLoS ONE. 2014;9: e102261.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhao L. Urban growth and climate adaptation. Nat Clim Change. 2018;8:1034.

    Article  Google Scholar 

  26. McGrane SJ. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrolog Sci J. 2016;61:2295–311.

    Article  Google Scholar 

  27. Moore M, Gould P, Keary BS. Global urbanization and impact on health. Int J Hyg Environ Health. 2003;206:269–78.

    Article  PubMed  Google Scholar 

  28. Sutton PC, Anderson SJ, Elvidge CD, Tuttle BT, Ghosh T. Paving the planet: impervious surface as proxy measure of the human ecological footprint. Prog Physical Geogr. 2009;33:510–27.

    Article  Google Scholar 

  29. Artmann M, Inostroza L, Fan P. Urban sprawl, compact urban development and green cities. How much do we know, how much do we agree? Ecol Indicators. 2019;96:3–99.

    Article  Google Scholar 

  30. Ewing R, Meakins G, Hamidi S, Nelson AC. Relationship between urban sprawl and physical activity, obesity, and morbidity - update and refinement. Health Place. 2014;26:118–26. https://doi.org/10.1016/j.healthplace.2013.12.008.

    Article  PubMed  Google Scholar 

  31. Burchell RW, Mukherji S. Conventional development versus managed growth: the costs of sprawl. Am J Public Health. 2003;93:1534–40.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Green RE, Cornell SJ, Scharlemann JP, Balmford A. Farming and the fate of wild nature. Science. 2005;307:550–5.

    Article  CAS  PubMed  Google Scholar 

  33. Van Noordwijk M, Tomich T, De Foresta H, Michon G. To segregate-or to integrate? The question of balance between production and biodiversity conservation in complex agroforestry systems. Agroforestry Today (ICRAF). 1997;9:6–9.

    Google Scholar 

  34. Gabriel D, Carver SJ, Durham H, Kunin WE, Palmer RC, Sait SM, et al. The spatial aggregation of organic farming in England and its underlying environmental correlates. J Appl Ecol. 2009;46:323–33.

    Article  Google Scholar 

  35. Phalan B, Balmford A, Green RE, Scharlemann JP. Minimising the harm to biodiversity of producing more food globally. Food Policy. 2011;36:S62–71.

    Article  Google Scholar 

  36. • Balmford A. Concentrating vs. spreading our footprint: how to meet humanity’s needs at least cost to nature. J Zool. 2021;315:79–109. Reviews evidence to date in agricultural sparing-sharing research, and highlights selected non-agricultural applications.

  37. Phalan BT. What have we learned from the land sparing-sharing model? Sustainability. 2018;10:1760.

    Article  Google Scholar 

  38. Kremen C. Reframing the land-sparing/land-sharing debate for biodiversity conservation. Ann N Y Acad Sci. 2015;1355:52–76.

    Article  PubMed  Google Scholar 

  39. Ekroos J, Ödman AM, Andersson GK, Birkhofer K, Herbertsson L, Klatt BK, et al. Sparing land for biodiversity at multiple spatial scales. Front Ecol Evol. 2016;3:145.

    Article  Google Scholar 

  40. Fischer J, Abson DJ, Butsic V, Chappell MJ, Ekroos J, Hanspach J, et al. Land sparing versus land sharing: moving forward. Conserv Lett. 2014;7:149–57.

    Article  Google Scholar 

  41. Balmford A, Green R, Phalan B. Land for food and land for nature? Daedalus. 2015;144:57–75.

    Article  Google Scholar 

  42. Kremen C, Merenlender AM. Landscapes that work for biodiversity and people. Science. 2018;362:eaau6020.

    Article  PubMed  Google Scholar 

  43. • Grass I, Loos J, Baensch S, Batáry P, Librán‐Embid F, Ficiciyan A, et al. Land‐sharing/‐sparing connectivity landscapes for ecosystem services and biodiversity conservation. People and Nature. 2019;1:262–72. A non-urban perspective piece highlighting the need to incorporate landscape connectivity into the sharing-sparing approach.

  44. Fahrig L. Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst. 2017;48:1–23.

    Article  Google Scholar 

  45. Lin BB, Fuller RA. Sharing or sparing? How should we grow the world’s cities? J Appl Ecol. 2013;50:1161–8.

    Article  Google Scholar 

  46. Soulé ME. Land use planning and wildlife maintenance. In: Urban Ecology. Springer; 2008. p. 699–713.

    Chapter  Google Scholar 

  47. Wittig R, Breuste J, Finke L, Kleyer M, Rebele F, Reidl K, et al. What should an ideal city look like from an ecological view? Ecological demands on the future city. In: Urban Ecology. Springer; 2008. p. 691–8.

    Chapter  Google Scholar 

  48. Gagné SA, Fahrig L. The trade-off between housing density and sprawl area: minimizing impacts to carabid beetles (Coleoptera: Carabidae). Ecol Soc. 2010;15:12.

    Article  Google Scholar 

  49. Gagné SA, Fahrig L. The trade-off between housing density and sprawl area: minimising impacts to forest breeding birds. Basic Appl Ecol. 2010;11:723–33.

    Article  Google Scholar 

  50. Sushinsky JR, Rhodes JR, Possingham HP, Gill TK, Fuller RA. How should we grow cities to minimize their biodiversity impacts? Global Change Biol. 2013;19:401–10.

    Article  Google Scholar 

  51. Szulkin M, Garroway CJ, Corsini M, Kotarba AZ, Dominoni D. How to quantify urbanization when testing for urban evolution? In: Urban Evolutionary Biology. Oxford; 2020. p. 13.

    Chapter  Google Scholar 

  52. R Core Team. R: A Language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.

    Google Scholar 

  53. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.

    Google Scholar 

  54. Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.

    Article  Google Scholar 

  55. Fox J, Weisberg S. An R companion to applied regression. 3rd ed. Thousand Oaks, CA: Sage; 2019.

    Google Scholar 

  56. Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J J Math Methods Biosci. 2008;50:346–63.

    Google Scholar 

  57. Ibáñez-Álamo JD, Morelli F, Benedetti Y, Rubio E, Jokimäki J, Pérez-Contreras T, et al. Biodiversity within the city: effects of land sharing and land sparing urban development on avian diversity. Sci Total Environ. 2020;707: 135477.

    Article  PubMed  Google Scholar 

  58. Jokimäki J, Suhonen J, Benedetti Y, Diaz M, Kaisanlahti-Jokimäki ML, Morelli F, et al. Land-sharing vs. land-sparing urban development modulate predator–prey interactions in Europe. Ecol Appl. 2020;30:e02049.

    Article  PubMed  Google Scholar 

  59. Stott I, Soga M, Inger R, Gaston KJ. Land sparing is crucial for urban ecosystem services. Front Ecol Environ. 2015;13:387–93.

    Article  Google Scholar 

  60. Hu T, Peng J, Liu Y, Wu J, Li W, Zhou B. Evidence of green space sparing to ecosystem service improvement in urban regions: a case study of China’s ecological red line policy. J Clean Prod. 2020;251: 119678.

    Article  Google Scholar 

  61. Lahr EC, Dunn RR, Frank SD. Getting ahead of the curve: cities as surrogates for global change. Proc Roy Soc B. 2018;285:20180643.

    Article  Google Scholar 

  62. Aronson MF, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc Roy Soc B. 2014;281:20133330.

    Article  Google Scholar 

  63. Diamond SE, Dunn RR, Frank SD, Haddad NM, Martin RA. Shared and unique responses of insects to the interaction of urbanization and background climate. Curr Opin Insect Sci. 2015;11:71–7.

    Article  PubMed  Google Scholar 

  64. Youngsteadt E, Terando AJ. Ecology of urban climates: the need for a landscape biophysics in cities. In: Barbosa P, editor. Urban Ecology: Its Nature and Challenges. Wallingford, UK: CABI; 2020.

    Google Scholar 

  65. IPCC. Climate Change 2022: Impacts, adaptation and vulnerability: contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2022. in press.

    Google Scholar 

  66. Caryl FM, Lumsden LF, van der Ree R, Wintle BA. Functional responses of insectivorous bats to increasing housing density support ‘land-sparing’rather than ‘land-sharing’urban growth strategies. J Appl Ecol. 2016;53:191–201.

    Article  Google Scholar 

  67. Collas L, Green RE, Ross A, Wastell JH, Balmford A. Urban development, land sharing and land sparing: the importance of considering restoration. J Appl Ecol. 2017;54:1865–73.

    Article  CAS  Google Scholar 

  68. Soga M, Yamaura Y, Koike S, Gaston KJ. Land sharing vs. land sparing: does the compact city reconcile urban development and biodiversity conservation? J Appl Ecol. 2014;51:1378–86.

    Article  Google Scholar 

  69. • Geschke A, James S, Bennett AF, Nimmo DG. Compact cities or sprawling suburbs? Optimising the distribution of people in cities to maximise species diversity. J Appl Ecol. 2018;55:2320–31. Takes an optimization approach, considering multiple landscape compartments with urban densities between the sparing-sharing extremes; the solution that optimizes geometric mean of bird abundance across species includes some lower-density housing than extreme sparing.

  70. Wang L, Lyons J, Kanehl P, Bannerman R. Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environ Manag. 2001;28:255–66.

    Article  CAS  Google Scholar 

  71. Villaseñor NR, Tulloch AI, Driscoll DA, Gibbons P, Lindenmayer DB. Compact development minimizes the impacts of urban growth on native mammals. J Appl Ecol. 2017;54:794–804.

    Article  Google Scholar 

  72. Soga M, Yamaura Y, Aikoh T, Shoji Y, Kubo T, Gaston KJ. Reducing the extinction of experience: association between urban form and recreational use of public greenspace. Landscape Urban Plann. 2015;143:69–75.

    Article  Google Scholar 

  73. Dennis M, Scaletta KL, James P. Evaluating urban environmental and ecological landscape characteristics as a function of land-sharing-sparing, urbanity and scale. PLoS ONE. 2019;14: e0215796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Graham MH. Confronting multicollinearity in ecological multiple regression. Ecology. 2003;84:2809–15.

    Article  Google Scholar 

  75. Osborne PE, Alvares-Sanches T. Quantifying how landscape composition and configuration affect urban land surface temperatures using machine learning and neutral landscapes. Comput Environ Urban. 2019;76:80–90.

    Article  Google Scholar 

  76. Bettencourt LM. The origins of scaling in cities. Science. 2013;340:1438–41.

    Article  CAS  PubMed  Google Scholar 

  77. United Nations. Sustainable development goals metadata repository-SDG indicator metadata (Format Version 1.0). New York: United Nations, Department of Economic and Social Affairs, Statistics Division; 2021. https://unstats.un.org/sdgs/metadata/files/Metadata-11-03-01.pdf. Accessed 22 May 2022.

  78. Vogler JB, Vukomanovic J. Trends in United States human footprint revealed by new spatial metrics of urbanization and per capita land change. Sustainability. 2021;13:12852.

    Article  Google Scholar 

  79. Watts ME, Ball IR, Stewart RS, Klein CJ, Wilson K, Steinback C, et al. Marxan with zones: software for optimal conservation based land-and sea-use zoning. Environ Model Softw. 2009;24:1513–21.

    Article  Google Scholar 

  80. Law EA, Bryan BA, Meijaard E, Mallawaarachchi T, Struebig MJ, Watts ME, et al. Mixed policies give more options in multifunctional tropical forest landscapes. J Appl Ecol. 2017;54:51–60.

    Article  Google Scholar 

  81. Lin J, Li X. Large-scale ecological red line planning in urban agglomerations using a semi-automatic intelligent zoning method. Sustain Cities Soc. 2019;46: 101410.

    Article  Google Scholar 

  82. Vukomanovic J, Smart L. GIS participatory modeling. In: Wilson JP, editor. The geographic information science & technology body of knowledge (1st Quarter 2021 Edition). University Consortium for Geographic Information Science; 2021.

    Google Scholar 

  83. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett. 2004;7:601–13.

    Article  Google Scholar 

  84. Andrade R, Franklin J, Larson KL, Swan CM, Lerman SB, Bateman HL, et al. Predicting the assembly of novel communities in urban ecosystems. Landscape Ecol. 2021;36:1–15.

    Article  Google Scholar 

  85. Chase JM, Jeliazkov A, Ladouceur E, Viana DS. Biodiversity conservation through the lens of metacommunity ecology. Ann N Y Acad Sci. 2020;1469:86–104.

    Article  PubMed  Google Scholar 

  86. Fahrig L, Watling JI, Arnillas CA, Arroyo-Rodríguez V, Jörger-Hickfang T, Müller J, et al. Resolving the SLOSS dilemma for biodiversity conservation: a research agenda. Biol Rev. 2022;97:99–114.

    Article  PubMed  Google Scholar 

  87. Daigle RM, Metaxas A, Balbar AC, McGowan J, Treml EA, Kuempel CD, et al. Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. Methods Ecol Evol. 2020;11:570–9.

    Article  Google Scholar 

  88. Richardson JL, Michaelides S, Combs M, Djan M, Bisch L, Barrett K, et al. Dispersal ability predicts spatial genetic structure in native mammals persisting across an urbanization gradient. Evol Appl. 2021;14:163–77.

    Article  CAS  PubMed  Google Scholar 

  89. Johansson V, Koffman A, Hedblom M, Deboni G, Andersson P. Estimates of accessible food resources for pollinators in urban landscapes should take landscape friction into account. Ecosphere. 2018;9: e02486.

    Article  Google Scholar 

  90. Shimazaki A, Yamaura Y, Senzaki M, Yabuhara Y, Akasaka T, Nakamura F. Urban permeability for birds: an approach combining mobbing-call experiments and circuit theory. Urban For Urban Green. 2016;19:167–75.

    Article  Google Scholar 

  91. Sokol ER, Brown BL, Carey CC, Tornwall BM, Swan CM, Barrett J. Linking management to biodiversity in built ponds using metacommunity simulations. Ecol Model. 2015;296:36–45.

    Article  Google Scholar 

  92. Keyel AC, Gerstenlauer JL, Wiegand K. SpatialDemography: a spatially explicit, stage-structured, metacommunity model. Ecography. 2016;39:1129–37.

    Article  Google Scholar 

  93. Thompson PL, Guzman LM, De Meester L, Horváth Z, Ptacnik R, Vanschoenwinkel B, et al. A process-based metacommunity framework linking local and regional scale community ecology. Ecol Lett. 2020;23:1314–29.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Paoletti M, Pimentel D, Stinner B, Stinner D. Agroecosystem biodiversity: matching production and conservation biology. Agric Ecosyst Environ. 1992;40:3–23.

    Article  Google Scholar 

  95. Thomas VG, Kevan PG. Basic principles of agroecology and sustainable agriculture. J Agric Environ Ethics. 1993;6:1–19.

    Article  Google Scholar 

  96. Parish J. Re-wilding Parkdale? Environmental gentrification, settler colonialism, and the reconfiguration of nature in 21st century Toronto. Environ Plann E Nat Space. 2020;3:263–86.

    Article  Google Scholar 

  97. Garrard GE, Williams NS, Mata L, Thomas J, Bekessy SA. Biodiversity sensitive urban design. Conserv Lett. 2018;11: e12411.

    Article  Google Scholar 

  98. • Runting RK, Griscom BW, Struebig MJ, Satar M, Meijaard E, Burivalova Z, et al. Larger gains from improved management over sparing–sharing for tropical forests. Nat Sustainability. 2019;2:53–61. A non-urban example highlighting the possibility that altering land-management practices in shared land may affect ecological outcomes as much or more than configuration; an area that urban research should pursue.

  99. Dickson BG, Albano CM, Anantharaman R, Beier P, Fargione J, Graves TA, et al. Circuit-theory applications to connectivity science and conservation. Conserv Biol. 2019;33:239–49.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by National Institute of Food and Agriculture Hatch Project 1018689 and National Institute of Food and Agriculture grant no. 2020-67013-31916 to EY.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed studies, collected data, contributed to manuscript drafts, and approved the final version. EY analyzed data.

Corresponding author

Correspondence to Elsa Youngsteadt.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Urban Landscape Ecology

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youngsteadt, E., Terando, A., Costanza, J. et al. Compact or Sprawling Cities: Has the Sparing-Sharing Framework Yielded an Ecological Verdict?. Curr Landscape Ecol Rep 8, 11–22 (2023). https://doi.org/10.1007/s40823-022-00081-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40823-022-00081-8

Keywords

Navigation