Advertisement

Current Landscape Ecology Reports

, Volume 4, Issue 2, pp 15–30 | Cite as

Countryside Biogeography: the Controls of Species Distributions in Human-Dominated Landscapes

  • Luke Owen FrishkoffEmail author
  • Alison Ke
  • Inês Santos Martins
  • Elissa M. Olimpi
  • Daniel Sol Karp
Interface of Landscape Ecology and Conservation Biology (J Watling, SECTION EDITOR)
Part of the following topical collections:
  1. Topical Collection on Interface of Landscape Ecology and Conservation Biology

Abstract

Purpose of Review

Countryside biogeography seeks to explain the distribution of wildlife in human-dominated landscapes. We review the theoretical and empirical progress towards this goal, assessing what forces control the presence, abundance, and richness of species in anthropogenic and natural habitats, based on characteristics of the landscape and the species themselves.

Recent Findings

Recent modifications of species-area relationships that incorporate multiple habitat types have improved understanding of species diversity in countryside landscapes. Attempts to understand why species affiliate with human-modified habitats have been met with only partial success. Though traits frequently explain associations with human-modified habitats within studies, explanatory traits are only rarely shared between studies, regions, or taxa. Nonetheless, greater attention to the regional and climatological context of countryside landscapes has uncovered that (i) species that associate with human-modified habitats within landscapes tend to occur primarily in warm and/or dry biomes at regional scales and (ii) species that rely exclusively on human-modified habitats in cool or wet regions may be restricted to natural habitats in warm or dry regions.

Summary

There remains a pressing need to determine how biodiversity can best be supported within landscapes to preserve nature and maximize ecosystem service benefits for humans. Future work in countryside biogeography must identify how land-use change interacts with other global stressors (e.g., climate change), determine how extinction debt and population sinks influence diversity, quantify the cascading effects of community changes on ecosystem services, and elucidate the evolutionary history and origins of species that today dwell in the countryside.

Keywords

Anthropocene Ecosystem services Traits Matrix Fragmentation 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Mendenhall CD, Kappel CV, Ehrlich PR. Countryside biogeography. Encyclopedia of biodiversity: Second Edition. 2nd ed. Amsterdam: Elsevier; 2013. p. 347–60.CrossRefGoogle Scholar
  2. 2.
    Kennedy CM, et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett. 2013;16(5):584–99.CrossRefGoogle Scholar
  3. 3.
    Mendenhall CD, Sekercioglu CH, Brenes FO, Ehrlich PR, Daily GC. Predictive model for sustaining biodiversity in tropical countryside. Proc Natl Acad Sci U S A. 2011;108(39):16313–6.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Daily GC, Ehrlich PR, Sánchez-Azofeifa GA. Countryside biogeography: use of human-dominated habitats by the avifauna of Southern Costa Rica. Ecol Appl. 2001;11(1):1–13.CrossRefGoogle Scholar
  5. 5.
    Daily GC. Countryside biogeography and the provision of ecosystem services. In: Raven PH, editor. Nature and human society: the quest for a sustainable world. Washington, D.C.: National Research Council, National Academy Press; 1997. p. 104–13.Google Scholar
  6. 6.
    Estrada A, et al. Bat species richness and abundance in tropical rain forest fragments and in agricultural habitats at Los Tuxtlas , Mexico. Oikos. 1993;16(4):309–18.Google Scholar
  7. 7.
    MacArthur RH, Wilson EO. The theory of island biogeography. Princeton: Princeton University Press; 1967.Google Scholar
  8. 8.
    Mendenhall CD, Shields-Estrada A, Krishnaswami AJ, Daily GC. Quantifying and sustaining biodiversity in tropical agricultural landscapes. Proc Natl Acad Sci. 2016;113(51):14544–51.CrossRefGoogle Scholar
  9. 9.
    Daily GC, et al. Countryside biogeography of Neotropical mammals: conservation opportunities in agricultural landscapes of Costa Rica. Conserv Biol. 2003;17(6):1814–26.CrossRefGoogle Scholar
  10. 10.
    Ricketts TH. The matrix matters: effective isolation in fragmented landscapes. Am Nat. 2001;158(1):87–99.CrossRefGoogle Scholar
  11. 11.
    Kennedy CM, Grant EHC, Neel MC, Fagan WF, Marra PP. Landscape matrix mediates occupancy dynamics of Neotropical avian insectivores. Ecol Appl. 2011;21(5):1837–50.CrossRefGoogle Scholar
  12. 12.
    Prevedello JA, Vieira MV. Does the type of matrix matter? A quantitative review of the evidence. Biodivers Conserv. 2010;19(5):1205–23.CrossRefGoogle Scholar
  13. 13.
    Kupfer JA, Malanson GP, Franklin SB. Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects. Glob Ecol Biogeogr. 2006;15(1):8–20.CrossRefGoogle Scholar
  14. 14.
    Sekercioglu CH, Loarie SR, Oviedo Brenes F, Ehrlich PR, Daily GC. Persistence of forest birds in the Costa Rican agricultural countryside. Conserv Biol. 2007;21(2):482–94.CrossRefGoogle Scholar
  15. 15.
    Mendenhall CD, Karp DS, Meyer CFJ, Hadly EA, Daily GC. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature. 2014;509:213–7.CrossRefGoogle Scholar
  16. 16.
    • Pulsford SA, Lindenmayer DB, Driscoll DA. Reptiles and frogs conform to multiple conceptual landscape models in an agricultural landscape. Divers Distrib. 2017;23:1408–22 This is one of few studies that tests a suite of alternative conceptual models for the factors that control species distributions in human-modified countryside, highlighting the species-specificity of responses to habitat change, and the relative underperformance of commonly-used models to explain biodiversity at the landscape scale. CrossRefGoogle Scholar
  17. 17.
    Fischer J, Lindenmayer DB. Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr. 2007;15:55–66.Google Scholar
  18. 18.
    Mayfield M, Daily G. Countryside biogeography of Neotropical herbaceous and shrubby plants. Ecol Appl. 2005;15(2):423.CrossRefGoogle Scholar
  19. 19.
    Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr. 2010;19:589–60.Google Scholar
  20. 20.
    Shochat E, Warren PS, Faeth SH, McIntyre NE, Hope D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol. 2006;21(4):186–91.CrossRefGoogle Scholar
  21. 21.
    Levins R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am. 1969;15:237–40.Google Scholar
  22. 22.
    Hanski I, Gilpin ME. Metapopulation biology: ecology, genetics, and evolution. San Diego: Academic Press; 1997.Google Scholar
  23. 23.
    Saunders DA, Hobbs RJ, Margules CR. Biological consequences of ecosystem fragmentation: a review. Conserv Biol. 1991;5(1):18–32.CrossRefGoogle Scholar
  24. 24.
    Driscoll DA, Banks SC, Barton PS, Lindenmayer DB, Smith AL. Conceptual domain of the matrix in fragmented landscapes. Trends Ecol Evol. 2013;28(10):605–13.CrossRefGoogle Scholar
  25. 25.
    Rosenzweig M. Species Diversity in Space and Time. Cambridge: Cambridge University Press. 1995.  https://doi.org/10.1017/CBO9780511623387..
  26. 26.
    Pimm SL, Askins RA. Forest losses predict bird extinctions in eastern North America. Proc Natl Acad Sci U S A. 1995;92(20):9343.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    van Vuuren DP, Sala OE, Pereira HM. The future of vascular plant diversity under four global scenarios. Ecol Soc. 2006;11(2):25.CrossRefGoogle Scholar
  28. 28.
    He F, Hubbell SP. Species–area relationships always overestimate extinction rates from habitat loss. Nature. 2011;473(7347):368–71.CrossRefGoogle Scholar
  29. 29.
    Pereira HM, Borda-de-Água L, Martins IS. Geometry and scale in species-area relationships. Nature. 2012;482(7386):E3–4.CrossRefGoogle Scholar
  30. 30.
    Watling JI, Nowakowski a J, Donnelly MA, Orrock JL. Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat. Glob Ecol Biogeogr. 2011;20:209–17.CrossRefGoogle Scholar
  31. 31.
    Wolfe JD, Stouffer PC, Mokross K, Powell LL, Anciães MM. Island vs. countryside biogeography: an examination of how Amazonian birds respond to forest clearing and fragmentation. Ecosphere. 2015;6(12):1–14.CrossRefGoogle Scholar
  32. 32.
    Ranganathan J, Daniels R, Chandran S, Ehrlich PR, Daily GC. Sustaining biodiversity in ancient tropical countryside. Proc Natl Acad Sci. 2008;105(46):17852–4.CrossRefGoogle Scholar
  33. 33.
    Pineda E, Moreno C, Escobar F, Halffter G. Frog, bat, and dung beetle diversity in the cloud fForest and coffee agroecosystems of Veracruz, Mexico. Conserv Biol. 2005;19(2):400–10.CrossRefGoogle Scholar
  34. 34.
    Mulwa RK, Böhning-Gaese K, Schleuning M. High bird species diversity in structurally heterogeneous farmland in Western Kenya. Biotropica. 2012;44(6):801–9.CrossRefGoogle Scholar
  35. 35.
    Batáry P, Matthiesen T, Tscharntke T. Landscape-moderated importance of hedges in conserving farmland bird diversity of organic vs. conventional croplands and grasslands. Biol Conserv. 2010;143(9):2020–7.CrossRefGoogle Scholar
  36. 36.
    Kremen C, M’Gonigle LK. Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J Appl Ecol. 2015;52(3):602–10.CrossRefGoogle Scholar
  37. 37.
    IUCN 2017. The IUCN Red List of Threatened Species. Version 2017-1. http://www.iucnredlist.org.
  38. 38.
    Tjørve E. Habitat size and number in multi-habitat landscapes: a model approach based on species-area curves. Ecography (Cop). 2002;25(1):17–24.CrossRefGoogle Scholar
  39. 39.
    Triantis KA, Mylonas M, Lika K, Vardinoyannis K. A model for the species–area–habitat relationship. J Biogeogr. 2003;30(1):19–27.CrossRefGoogle Scholar
  40. 40.
    Pereira HM, Daily GC. Modeling biodiversity dynamics in countryside landscapes. Ecology. 2006;87(8):1877–85.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Koh LP, Ghazoul J. A matrix-calibrated species-area model for predicting biodiversity losses due to land-use change. Conserv Biol. 2010;24(4):994–1001.CrossRefGoogle Scholar
  42. 42.
    Guilherme JL, Pereira HM. Adaptation of bird communities to farmland abandonment in a mountain landscape. PLoS One. 2013;8(9):e73619.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Proença V, Pereira HM. Species–area models to assess biodiversity change in multi-habitat landscapes : the importance of species habitat affinity. Basic Appl Ecol. 2013;14:102–14.CrossRefGoogle Scholar
  44. 44.
    Martins IS, Proença V, Pereira HM. The unusual suspect: land use is a key predictor of biodiversity patterns in the Iberian Peninsula. Acta Oecol. 2014;61:41–50.CrossRefGoogle Scholar
  45. 45.
    • Martins IS, Pereira HM. Improving extinction projections across scales and habitats using the countryside species-area relationship. Sci Rep. 2017;7(1):12899 This study contributes to a deeper understanding of SAR-based models (i.e., the classic SAR and countryside SAR) and their applicability when projecting species extinctions as a consequence of habitat loss. It reveals that the proportion of species extinctions derived from SAR models change with a grain of analysis, providing novel and highly relevant insights for further research on biodiversity loss due to land-use change. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hanski I, Zurita GA, Bellocq MI, Rybicki J. Species-fragmented area relationship. Proc Natl Acad Sci. 2013;110(31):12715–20.CrossRefGoogle Scholar
  47. 47.
    Bennett AF, Radford JQ, Haslem A. Properties of land mosaics: implications for nature conservation in agricultural environments. Biol Conserv. 2006;133(2):250–64.CrossRefGoogle Scholar
  48. 48.
    Martins IS (2018) Understanding species responses to habitat change across scales using ,the countryside species-area relationship (doctoral dissertation).Google Scholar
  49. 49.
    Balmford A, Green RE, Scharlemann JPW. Sparing land for nature: exploring the potential impact of changes in agricultural yield on the area needed for crop production. Glob Chang Biol. 2005;11:1594–605.CrossRefGoogle Scholar
  50. 50.
    • Isbell F, et al. Linking the influence and dependence of people on biodiversity across scales. Nature. 2017;546(7656):65–72 This review examines results that expand the scales of knowledge of the relationships between anthropogenic drivers, biodiversity, ecosystem functioning, and ecosystem services and begin to link them to one another. It shows that the cascading impacts of human activities on biodiversity and ecosystems, as well as their consequences for people, will probably increase at larger spatial and longer temporal scales. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Dengler J. Which function describes the species-area relationship best? A review and empirical evaluation. J Biogeogr. 2009;36(4):728–44.CrossRefGoogle Scholar
  52. 52.
    Brudvig LA, et al. Evaluating conceptual models of landscape change. Ecography (Cop). 2017;40:74–84.CrossRefGoogle Scholar
  53. 53.
    Fahrig L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr. 2013;40(9):1649–63.CrossRefGoogle Scholar
  54. 54.
    Gascon C, et al. Matrix habitat and species richness in tropical forest remnants. Biol Conserv. 1999;91:223–9.CrossRefGoogle Scholar
  55. 55.
    Perfecto I, Vandermeer J. The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proc Natl Acad Sci. 2010;107(13):5786–91.CrossRefGoogle Scholar
  56. 56.
    Fischer J, Lindenmayer DL. Beyond fragmentation: the continuum model for fauna research and conservation in human-modified landscapes. Oikos. 2006;112(2):473–80.CrossRefGoogle Scholar
  57. 57.
    Prugh LR, Hodges KE, Sinclair ARE, Brashares JS. Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci. 2008;105(52):20770–5.CrossRefGoogle Scholar
  58. 58.
    Gibson L, et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science. 2013;341(6153):1508–10.CrossRefGoogle Scholar
  59. 59.
    Lichtenberg EM, et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob Chang Biol. 2017;23(11):4946–57.CrossRefGoogle Scholar
  60. 60.
    Gonthier DJ, et al. Biodiversity conservation in agriculture requires a multi-scale approach. Proc R Soc B. 2014;281:1–8.CrossRefGoogle Scholar
  61. 61.
    Benton TG, Vickery JA, Wilson JD. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol. 2003;18(4):182–8.CrossRefGoogle Scholar
  62. 62.
    Concepción ED, Díaz M, Baquero RA. Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landsc Ecol. 2008;23(2):135–48.CrossRefGoogle Scholar
  63. 63.
    Winqvist C, Ahnström J, Bengtsson J. Effects of organic farming on biodiversity and ecosystem services: taking landscape complexity into account. Ann N Y Acad Sci. 2012;1249(1):191–203.CrossRefGoogle Scholar
  64. 64.
    Hole DG, et al. Does organic farming benefit biodiversity? Biol Conserv. 2005;122(1):113–30.CrossRefGoogle Scholar
  65. 65.
    Fuller RJ, et al. Benefits of organic farming to biodiversity vary among taxa. Biol Lett. 2005;1(4):431–4.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Shennan C, et al. Organic and conventional agriculture: a useful framing? Annu Rev Environ Resour. 2015;42(1):317–46.CrossRefGoogle Scholar
  67. 67.
    Olimpi EM, Philpott SM. Agroecological farming practices promote bats. Agric Ecosyst Environ. 2018;265:282–91.CrossRefGoogle Scholar
  68. 68.
    Heath SK, Soykan CU, Velas KL, Kelsey R, Kross SM. A bustle in the hedgerow: woody field margins boost on farm avian diversity and abundance in an intensive agricultural landscape. Biol Conserv. 2017;212(June):153–61.CrossRefGoogle Scholar
  69. 69.
    • Ponisio LC, M’Gonigle LK, Kremen C. On-farm habitat restoration counters biotic homogenization in intensively managed agriculture. Glob Chang Biol. 2016;22(2):704–15 This is an example of how local, on-farm management practices can scale up across the countryside and support biodiversity conservation. In this case, native plant hedgerows replicated across an intensive agricultural landscape increased pollinator β-diversity similar to turnover found in natural pollinator communities. CrossRefGoogle Scholar
  70. 70.
    Le Roux DS, Ikin K, Lindenmayer DB, Manning AD, Gibbons P. The value of scattered trees for wildlife: contrasting effects of landscape context and tree size. Divers Distrib. 2018;24(1):69–81.CrossRefGoogle Scholar
  71. 71.
    Luck GW, Daily GC. Tropical countryside bird assemblages: richness , composition , foraging differ by landscape context. Ecol Appl. 2003;13(1):235–47.CrossRefGoogle Scholar
  72. 72.
    Graham L, Gaulton R, Gerard F, Staley JT. The influence of hedgerow structural condition on wildlife habitat provision in farmed landscapes. Biol Conserv. 2018;220(February):122–31.CrossRefGoogle Scholar
  73. 73.
    •• Prevedello JA, Almeida-Gomes M, Lindenmayer DB. The importance of scattered trees for biodiversity conservation: a global meta-analysis. J Appl Ecol. 2018;55(1):205–14 This global meta-analysis examines the relationship between scattered trees, believed to be keystone conservation structures and species richness, abundance, and community composition of multiple taxa. Compared to open areas, matrix habitat with scattered trees had greater biodiversity and communities more similar to natural habitat, highlighting the need for policies that promote scattered trees in matrix habitat in forested and non-forested regions, which may be compatible with livestock grazing. Google Scholar
  74. 74.
    Fischer J, Stott J, Law BS. The disproportionate value of scattered trees. Biol Conserv. 2010;143(6):1564–7.CrossRefGoogle Scholar
  75. 75.
    Siqueira FF, Calasans LV, Furtado RQ, Carneiro VMC, van den Berg E. How scattered trees matter for biodiversity conservation in active pastures. Agric Ecosyst Environ. 2017;250(December):12–9.CrossRefGoogle Scholar
  76. 76.
    • Kremen C. Reframing the land-sparing/land-sharing debate for biodiversity conservation. Ann N Y Acad Sci. 2015;1355(1):52–76 This review addresses empirical evidence in favor of land sparing vs. land sharing and examines the implied assumption by proponents of land sparing that agricultural intensification is paired with land sparing. This research highlights the need for both protected areas and permeable matrices, and the need to consider political and socioecological context to reconcile production with conservation. CrossRefGoogle Scholar
  77. 77.
    Steffan-Dewenter I, Tscharntke T. Insect communities and biotic interactions on fragmented calcareous grasslands - a mini review. Biol Conserv. 2002;104(3):275–84.CrossRefGoogle Scholar
  78. 78.
    Moorhead LC, Philpott SM, Bichier P. Epiphyte biodiversity in the coffee agricultural matrix: canopy stratification and distance from forest fragments. Conserv Biol. 2010;24(3):737–46.CrossRefGoogle Scholar
  79. 79.
    Fahrig L. How much habitat is enough? Biol Conserv. 2001;100(1):65–74.CrossRefGoogle Scholar
  80. 80.
    Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology. 2002;83:1421–32.CrossRefGoogle Scholar
  81. 81.
    • Reynolds C, et al. Inconsistent effects of landscape heterogeneity and land-use on animal diversity in an agricultural mosaic: a multi-scale and multi-taxon investigation. Landsc Ecol. 2018;33(2):241–55 This is a study that considers multiple taxa and spatial scales while investigating the effects of different components of landscape heterogeneity on biodiversity. It shows that landscape heterogeneity has inconsistent effects on biodiversity across taxa and spatial scales, so that multiple strategies are required for overall biodiversity conservation in agricultural landscapes. CrossRefGoogle Scholar
  82. 82.
    Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol Lett. 2005;8(8):857–74.CrossRefGoogle Scholar
  83. 83.
    Kremen C, et al. Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett. 2007;10(4):299–314.CrossRefGoogle Scholar
  84. 84.
    Fahrig L. Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst. 2003;34:487–515.CrossRefGoogle Scholar
  85. 85.
    Haslem A, Bennett AF. Birds in agricultural mosaics: the influence of landscape pattern and countryside heterogeneity. Ecol Appl. 2008;18(1):185–96.CrossRefGoogle Scholar
  86. 86.
    Rader R, et al. Organic farming and heterogeneous landscapes positively affect different measures of plant diversity. J Appl Ecol. 2014;51:1544–53.CrossRefGoogle Scholar
  87. 87.
    Monck-Whipp L, Martin AE, Francis CM, Fahrig L. Farmland heterogeneity benefits bats in agricultural landscapes. Agric Ecosyst Environ. 2018;253(April 2017):131–9.CrossRefGoogle Scholar
  88. 88.
    Ke A, et al. Landscape heterogeneity shapes taxonomic diversity of non-breeding birds across fragmented savanna landscapes. Biodivers Conserv. 2018;27(10):2681–98.CrossRefGoogle Scholar
  89. 89.
    Batáry P, Báldi A, Kleijn D, Tscharntke T. Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc R Soc B Biol Sci. 2011;278(1713):1894–902.CrossRefGoogle Scholar
  90. 90.
    Tuck SL, et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J Appl Ecol. 2014;51(3):746–55.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Hadley AS, Betts MG. Refocusing habitat fragmentation research using lessons from the last decade. Curr Landsc Ecol Rep. 2016;1(2):55–66.CrossRefGoogle Scholar
  92. 92.
    Fahrig L. Habitat fragmentation : a long and tangled tale. Glob Ecol Biogeogr. 2018:1–18.Google Scholar
  93. 93.
    Pfeifer M, et al. Creation of forest edges has a global impact on forest vertebrates. Nature. 2017;551:187–91.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Karp DS, et al. Agriculture erases climate-driven β-diversity in Neotropical bird communities. Glob Chang Biol. 2018;24(1):338–49.CrossRefGoogle Scholar
  95. 95.
    Phalan B, Onial M, Balmford A, Green RE. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science. 2011;333(6047):1289–91.CrossRefGoogle Scholar
  96. 96.
    Clough Y, et al. Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci U S A. 2011;108(20):8311–6.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Cunningham SA, et al. To close the yield-gap while saving biodiversity will require multiple locally relevant strategies. Agric Ecosyst Environ. 2013;173:20–7.CrossRefGoogle Scholar
  98. 98.
    Kremen C, & Merenlender AM. Landscapes that work for biodiversity and people. Science, 2018;362, eaau6020. https://doi.org/10.1126/science.aau6020.
  99. 99.
    Helmus MR, Mahler DL, Losos JB. Island biogeography of the Anthropocene. Nature. 2014;513(7519):543–6.CrossRefGoogle Scholar
  100. 100.
    Capinha C, Essl F, Seebens H, Moser D, Pereira HM. The dispersal of alien species redefines biogeography in the Anthropocene. Science. 2015;348(6240):1248–51.CrossRefGoogle Scholar
  101. 101.
    Dyer EE, et al. The global distribution and drivers of alien bird species introduction and richness. PLoS Biol. 2017;15(1):e2000942.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Ellis EC, Ramankutty N. Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ. 2008;6(8):439–47.CrossRefGoogle Scholar
  103. 103.
    Sol D, Bartomeus I, Griffin AS. The paradox of invasion in birds: competitive superiority or ecological opportunism? Oecologia. 2012;169(2):553–64.CrossRefGoogle Scholar
  104. 104.
    Frishkoff LO, et al. Climate change and habitat conversion favour the same species. Ecol Lett. 2016;19(9):1081–90.CrossRefGoogle Scholar
  105. 105.
    Drapeau P, Villard MA, Leduc A, Hannon SJ. Natural disturbance regimes as templates for the response of bird species assemblages to contemporary forest management. Divers Distrib. 2016;22(4):385–99.CrossRefGoogle Scholar
  106. 106.
    Driscoll DA, Lindenmayer DB. Framework to improve the application of theory in ecology and conservation. Ecol Monogr. 2012;82(1):129–47.CrossRefGoogle Scholar
  107. 107.
    Ferger SW, et al. Synergistic effects of climate and land use on avian beta-diversity. Divers Distrib. 2017;23:1246–55.CrossRefGoogle Scholar
  108. 108.
    Bennett JM, Clarke RH, Horrocks GFB, Thomson JR, Mac Nally R. Climate drying amplifies the effects of land-use change and interspecific interactions on birds. Landsc Ecol. 2015;30(10):2031–43.CrossRefGoogle Scholar
  109. 109.
    Frishkoff LO, Echeverri A, Chan KMA, & Karp DS. Do correlated responses to multiple environmental changes exacerbate or mitigate species loss? Oikos, 2018;127:1724–1734.  https://doi.org/10.1111/oik.05288.
  110. 110.
    Frishkoff LO, Gabot E, Sandler G, Marte C, & Mahler DL. Elevation shapes the reassembly of Anthropocene lizard communities. Nat. Ecol. Evol., 2019;3:638–646.  https://doi.org/10.1038/s41559-019-0819-0.
  111. 111.
    Nowakowski AJ, Frishkoff LO, Thompson ME, Smith TM, Todd BD. Phylogenetic homogenization of amphibian assemblages in human-altered habitats across the globe. Proc Natl Acad Sci. 2018;115(15):E3454–62.CrossRefGoogle Scholar
  112. 112.
    Echeverría-Londoño S, et al. Modelling and projecting the response of local assemblage composition to land-use change across Colombia. Divers Distrib. 2016;22(11):1099–111.CrossRefGoogle Scholar
  113. 113.
    •• Nowakowski AJ, et al. Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol Lett. 2018;21:345–55 This study robustly documents that species’ thermal biology is the major mechanism governing amphibian and reptile distributions in the countryside across multiple study regions. It underscores the need to more thoroughly examine physiological and other hard to measure traits, to understand countryside distributions, rather than only the conventional sets such as body size and dietary guild from large extant databases. CrossRefGoogle Scholar
  114. 114.
    • Frishkoff LO, Hadly EA, Daily GC. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob Chang Biol. 2015;21(11):3901–16 This is a prime example of habitat switching in countryside landscapes, showing that species reliance on natural habitats is variable, depending on the climate zone in which the landscape is embedded. The study documents how taxa that are forest-restricted in the lowlands become restricted to human-modified areas in the highlands, challenging simplistic understandings of species tolerance to land-use change. CrossRefGoogle Scholar
  115. 115.
    Larsen TH. Upslope range shifts of Andean dung beetles in response to deforestation: compounding and confounding effects of microclimatic change. Biotropica. 2012;44(1):82–9.CrossRefGoogle Scholar
  116. 116.
    Clavero M, Brotons L. Functional homogenization of bird communities along habitat gradients: accounting for niche multidimensionality. Glob Ecol Biogeogr. 2010;19(5):684–96.Google Scholar
  117. 117.
    McKinney MLM, Lockwood JLJ. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol. 1999;14(11):450–3.CrossRefGoogle Scholar
  118. 118.
    Karp DS, et al. Intensive agriculture erodes β-diversity at large scales. Ecol Lett. 2012;15(9):963–70.CrossRefGoogle Scholar
  119. 119.
    Sreekar R, et al. Horizontal and vertical species turnover in tropical birds in habitats with differing land use. Biol Lett. 2017;13(5):20170186.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Morelli F, Benedetti Y, Ibáñez-Álamo JD, Jokimäki J, Mänd R, Tryjanowski P, et al. Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Global Ecol. Biogeogr., 2016;25:1284–1293.  https://doi.org/10.1111/geb.12486.
  121. 121.
    Kennedy CM, Marra PP, Fagan WF, Neel MC. Landscape matrix and species traits mediate responses of Neotropical resident birds to forest fragmentation in Jamaica. Ecol Monogr. 2010;80(4):651–69.CrossRefGoogle Scholar
  122. 122.
    Li S, Zou F, Zhang Q, Sheldon FH. Species richness and guild composition in rubber plantations compared to secondary forest on Hainan Island, China. Agrofor Syst. 2013;87(5):1117–28.CrossRefGoogle Scholar
  123. 123.
    Wearn OR, et al. Mammalian species abundance across a gradient of tropical land-use intensity: a hierarchical multi-species modelling approach. Biol Conserv. 2017;212(August):162–71.CrossRefGoogle Scholar
  124. 124.
    •• Bartomeus I, Cariveau DP, Harrison T, Winfree R. On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos. 2018;127(2):306–15 This is a study that linked species traits of bees to their response to disturbance and contribution to ecosystem function. Though no trait predicted bee species’ pollination contribution, more studies linking species traits to response to land-use change and ecosystem function are important to understand how species use and persist in agricultural landscapes. CrossRefGoogle Scholar
  125. 125.
    Nowakowski AJ, et al. Tropical amphibians in shifting thermal landscapes under land use and climate change. Conserv Biol. 2017;31:1–31.CrossRefGoogle Scholar
  126. 126.
    Newbold T, et al. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc R Soc B. 2013;280:20122131.CrossRefGoogle Scholar
  127. 127.
    Börschig C, Klein AM, von Wehrden H, Krauss J. Traits of butterfly communities change from specialist to generalist characteristics with increasing land-use intensity. Basic Appl Ecol. 2013;14(7):547–54.CrossRefGoogle Scholar
  128. 128.
    Jennings N, Pocock MJO. Relationships between ecological traits and sensitivity to agricultural intensification in mammals and arthropods: effect of different aspects of intensification. Conserv Biol. 2009;23(5):1195–203.CrossRefGoogle Scholar
  129. 129.
    Tscharntke T, et al. Landscape contraints on functional diversity of birds and insects in tropical agroecosystems. Ecology. 2008;89(4):944–51.CrossRefGoogle Scholar
  130. 130.
    Pocock MJO. Can traits predict species’ vulnerability? A test with farmland passerines in two continents. Proc R Soc B Biol Sci. 2011;278(1711):1532–8.CrossRefGoogle Scholar
  131. 131.
    Frishkoff LO, et al. Loss of avian phylogenetic diversity in Neotropical agricultural systems. Science. 2014;345:1343–6.CrossRefGoogle Scholar
  132. 132.
    Frank HK, Frishkoff LO, Mendenhall CD, Daily GC, Hadly EA. Phylogeny, traits, and biodiversity of a Neotropical bat assemblage: close relatives show similar responses to local deforestation. Am Nat. 2017;190(2):200–12.CrossRefGoogle Scholar
  133. 133.
    Sol D, Bartomeus I, González-Lagos C, Pavoine S. Urbanisation and the loss of phylogenetic diversity in birds. Ecol Lett. 2017.  https://doi.org/10.1111/ele.12769.
  134. 134.
    Molina-Venegas R, Llorente-Culebras S, Ruiz-Benito P, Rodríguez MA. Evolutionary history predicts the response of tree species to forest loss : a case study in peninsular Spain. PLoS One. 2018;13(9):e0204365.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    • Greenberg DA, Palen WJ, Chan KC, Jetz W, Mooers AØ. Evolutionarily distinct amphibians are disproportionately lost from human-modified ecosystems. Ecol Lett. 2018;21:1530–40.  https://doi.org/10.1111/ele.13133 This is an excellent example of drawing on a clade’s deep evolutionary history to understand modern day affiliation with habitats in countryside landscapes. It shows that rapidly diversifying clades are more likely to occur in human-modified environments, but slow diversifying and therefore highly evolutionarily distinct clades are excluded. CrossRefPubMedGoogle Scholar
  136. 136.
    De Palma A, et al. Dimensions of biodiversity loss: spatial mismatch in land-use impacts on species, functional and phylogenetic diversity of European bees. Divers Distrib. 2017;23(12):1435–46.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Wilman H, et al. EltonTraits 1.0: species-level foraging attributes of the world’ s birds and mammals. Ecology. 2014;95(October 2013):2027.CrossRefGoogle Scholar
  138. 138.
    Newbold T, et al. Functional traits, land-use change and the structure of present and future bird communities in tropical forests. Glob Ecol Biogeogr. 2014;23:1073–84.CrossRefGoogle Scholar
  139. 139.
    Collard S, Le Brocque A, Zammit C. Bird assemblages in fragmented agricultural landscapes: the role of small brigalow remnants and adjoining land uses. Biodivers Conserv. 2009;18(6):1649–70.CrossRefGoogle Scholar
  140. 140.
    Betts MG, et al. A species-centered approach for uncovering generalities in organism responses to habitat loss and fragmentation. Ecography (Cop). 2014;37(6):517–27.CrossRefGoogle Scholar
  141. 141.
    Hatfield J, Orme CDL, Tobias JA, Banks-Leite C. Trait-based indicators of bird species sensitivity to habitat loss are effective within but not across data sets. Ecol Appl. 2018;28(1):28–34.CrossRefGoogle Scholar
  142. 142.
    Henle K, Davies KF, Kleyer M, Margules C, Settele J. Predictors of species sensitivity to fragmentation. Biodivers Conserv. 2004;13(1):207–51.CrossRefGoogle Scholar
  143. 143.
    Kremen C, Miles A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol Soc. 2012;17(4):40.Google Scholar
  144. 144.
    Losey JE, Vaughan M. The economic value of ecological services provided by insects. Bioscience. 2006;56(4):312–23.CrossRefGoogle Scholar
  145. 145.
    Klein A-M, et al. Importance of pollinators in changing landscapes for world crops. Proc R Soc B. 2009;274(1608):303–13.CrossRefGoogle Scholar
  146. 146.
    Zhang W, Ricketts TH, Kremen C, Carney KM, Swinton SM. Ecosystem services and dis-services to agriculture. Ecol Econ. 2007;64:253–60.CrossRefGoogle Scholar
  147. 147.
    • Ricketts TH, et al. Disaggregating the evidence linking biodiversity and ecosystem services. Nat Commun. 2016;7:1–8 This review explores how relationships between biodiversity and ecosystem services shift across spatial scales and experimental approaches. In doing so, it highlights key research gaps such as the need to (1) explore more services and different dimensions of biodiversity and (2) demonstrate how biodiversity actually benefits people. CrossRefGoogle Scholar
  148. 148.
    Cardinale BJ, et al. Biodiversity loss and its impact on humanity. Nature. 2012;486(7401):59–67.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Finke DL, Denno RF. Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecol Lett. 2005;8(12):1299–306.CrossRefGoogle Scholar
  150. 150.
    Vance-Chalcraft HD, Rosenheim JA, Vonesh JR, Osenberg CW, Sih A. The influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology. 2007;88(11):2689–96.CrossRefGoogle Scholar
  151. 151.
    • Wood SA, et al. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol Evol. 2015;30(9):531–9 This perspective proposes a trait-based framework for linking agro-ecosystem management to biodiversity and ecosystem outcomes. The authors argue that functional traits offer a general, mechanistic approach for predicting the cascading consequences of alternative agriculture practices. CrossRefGoogle Scholar
  152. 152.
    Gagic V, et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc R Soc B Biol Sci. 2015;282(1801):20142620–0.Google Scholar
  153. 153.
    Larsen TH, Williams NM, Kremen C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol Lett. 2005;8(5):538–47.CrossRefGoogle Scholar
  154. 154.
    Winfree R, Fox JW, Williams NM, James R, Cariveau DP. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol Lett. 2015;18:626–35.CrossRefGoogle Scholar
  155. 155.
    • Winfree R, et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science. 2018;359(6377):791–3 This paper demonstrates that the amount of biodiversity necessary for maintaining pollination services is scale-dependent. Natural trends in species turnover make it necessary to safeguard far more species—including rare species—than previously hypothesized. CrossRefGoogle Scholar
  156. 156.
    Ricketts TH, et al. Landscape effects on crop pollination services: are there general patterns? Ecol Lett. 2008;11(5):499–515.CrossRefGoogle Scholar
  157. 157.
    Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett. 2011;14:922–32.CrossRefGoogle Scholar
  158. 158.
    Tscharntke T, et al. When natural habitat fails to enhance biological pest control- five hypotheses. Biol Conserv. 2016;204:449–58.CrossRefGoogle Scholar
  159. 159.
    Karp DS, et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc Natl Acad Sci. 2018;115(33):E7863–70.CrossRefGoogle Scholar
  160. 160.
    Tscharntke T, et al. Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biol Rev. 2012;87(3):661–85.CrossRefGoogle Scholar
  161. 161.
    Karp DS, et al. Comanaging fresh produce for nature conservation and food safety. Proc Natl Acad Sci. 2015;112:11126–31.CrossRefGoogle Scholar
  162. 162.
    Karp DS, et al. Farming practices for food safety threaten pest-control services to fresh produce. J Appl Ecol. 2016;53:1402–12.CrossRefGoogle Scholar
  163. 163.
    Nowakowski AJ, Frishkoff LO, Agha M, Todd BD, Scheffers BR. Changing thermal landscapes: merging climate science and landscape ecology through thermal biology. Curr Landsc Ecol Rep. 2018;3:57–72.CrossRefGoogle Scholar
  164. 164.
    Opdam P, Wascher D. Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv. 2004;117(3):285–97.CrossRefGoogle Scholar
  165. 165.
    Zavaleta ES, Hulvey KB. Realistic species losses disproportionately reduce grassland resistance to biological invaders. Science. 2004;306(5699):1175–7.CrossRefGoogle Scholar
  166. 166.
    Duffy JE, Godwin CM, Cardinale BJ. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature. 2017;549(7671):261–4.CrossRefGoogle Scholar
  167. 167.
    Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc Natl Acad Sci U S A. 2010;107(4):1443–6.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Gilroy JJ, & Edwards DP. Source-Sink Dynamics: a Neglected Problem for Landscape-Scale Biodiversity Conservation in the Tropics. Curr Landsc. Ecol Rep, 2:51–60.  https://doi.org/10.1007/s40823-017-0023-3.
  169. 169.
    Elsen PR, Ramesh K, Wilcove DS. Conserving Himalayan birds in highly seasonal forested and agricultural landscapes. Conserv Biol. 2018;32(6):1313–24.CrossRefGoogle Scholar
  170. 170.
    Chandler RB, et al. A small-scale land-sparing approach to conserving biological diversity in tropical agricultural landscapes. Conserv Biol. 2013;27(4):785–95.CrossRefGoogle Scholar
  171. 171.
    Edwards DP, Gilroy JJ, Thomas GH, Uribe CAM, Haugaasen T. Land-sparing agriculture best protects avian phylogenetic diversity. Curr Biol. 2015:1–8.Google Scholar
  172. 172.
    Moore RP, Robinson WD, Lovette IJ, Robinson TR. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol Lett. 2008;11(9):960–8.CrossRefGoogle Scholar
  173. 173.
    Ibarra-Macias A, Robinson WD, Gaines MS. Experimental evaluation of bird movements in a fragmented Neotropical landscape. Biol Conserv. 2011;144(2):703–12.CrossRefGoogle Scholar
  174. 174.
    Anderson J, Rowcliffe JM, Cowlishaw G. Does the matrix matter? A forest primate in a complex agricultural landscape. Biol Conserv. 2007;135(2):212–22.CrossRefGoogle Scholar
  175. 175.
    Perlut NG, Strong AM, Donovan TM, Buckley NJ. Grassland songbird survival and recruitment in agricultural landscapes: implications for source-sink demography. Ecology. 2008;89(7):1941–52.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Department of Wildlife, Fish, and Conservation BiologyUniversity of CaliforniaDavisUSA
  3. 3.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
  4. 4.Institute of BiologyMartin Luther University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations