Appendix
Proof of Proposition 2
Given that \(R'(\theta )\ge (\le ) \ 0\) for all \(\theta \in [\underline{\theta },\overline{\theta }],\) it follows from Eq. (10) that there exists a point, \(\theta ^*\in (\underline{\theta },\overline{\theta }),\) at which \(R(\theta ^*)=R_C+C'(L^*).\) Note that
$$\begin{aligned} \frac{\partial }{\partial \theta }K'\bigg (\phi \Big ( [R({\theta })-R_C]L^{*}-C(L^{*})\Big )\bigg ) \end{aligned}$$
$$\begin{aligned} =K''\bigg (\phi \Big ([R({\theta })-R_C]L^{*}-C(L^{*})\Big )\bigg ) \phi '\Big ([R({\theta })-R_C]L^{*}-C(L^{*})\Big )R'(\theta ), \end{aligned}$$
(21)
which is negative (positive) given that \(R'(\theta )\ge (\le ) \ 0\) for all \(\theta \in [\underline{\theta },\overline{\theta }]\) and \(K''(\cdot )<0.\) Using Eq. (10), we have
$$\begin{aligned} \mathrm{Cov}_G\bigg [K'\bigg (\phi \Big ([R(\tilde{\theta })-R_C]L^{*}-C(L^{*})\Big )\bigg ), \phi '\Big ([R(\tilde{\theta })-R_C]L^{*}-C(L^{*})\Big ) \nonumber \\ \times [R(\tilde{\theta })-R_C-C'(L^*)]\bigg ] \nonumber \\ =\int _{\underline{\theta }}^{\overline{\theta }}\bigg [K'\bigg (\phi \Big ( [R({\theta })-R_C]L^{*}-C(L^{*})\Big )\bigg )-K'\bigg (\phi \Big ( [R({\theta ^*})-R_C]L^{*}-C(L^{*})\Big )\bigg )\bigg ] \end{aligned}$$
(22)
$$\begin{aligned} \times \phi '\Big ([R({\theta })-R_C]L^{*}-C(L^{*})\Big ) [R({\theta })-R_C-C'(L^{*})]\mathrm{d}G(\theta )<0, \end{aligned}$$
(23)
where the inequality follows from \(R'(\theta )\ge (\le ) \ 0\) for all \(\theta \in [\underline{\theta },\overline{\theta }]\) and Eq. (21). From Eq. (10), the right-hand side of Eq. (10) is negative so that \(L^{\dagger }<L^{*}\). \(\Box\)
For intuition we use Eq. (16) to compare the ambiguity premium under \(\phi (U)\) and that under \(K\Big (\phi (U)\Big )\), both of which are evaluated at \(L=L^*\):
$$\begin{aligned} \frac{\mathrm{Cov}_G\Big [\phi '\Big ([R(\tilde{\theta })-R_C]L^{*}-C(L^{*})\Big ),R(\tilde{\theta })\Big ]}{\mathrm{E}_G\Big [\phi '\Big ([R(\tilde{\theta })-R_C]L^{*}-C(L^{*})\Big )\Big ]} \end{aligned}$$
$$\begin{aligned} -\frac{\mathrm{Cov}_G\bigg [K'\bigg (\phi \Big ([R(\tilde{\theta })-R_C]L^{*}-C(L^{*})\Big )\bigg ) \phi '\Big ([R(\tilde{\theta })-R_C]L^{*}-C(L^{*})\Big ),R(\tilde{\theta }) \bigg ]}{\mathrm{E}_G\bigg [K'\bigg (\phi \Big ([R(\tilde{\theta })-R_C]L^{*}-C(L^{*})\Big )\bigg ) \phi '\Big ([R(\tilde{\theta })-R_C]L^{*}-C(L^{*})\Big )\bigg ]} \end{aligned}$$
$$\begin{aligned} =-\frac{\mathrm{Cov}_G\bigg [K'\bigg (\phi \Big ([R(\tilde{\theta })-R_C]L^{*}-C(L^{*})\Big )\bigg ), \phi '\Big ([R(\tilde{\theta })-R_C]L^{*}-C(L^{*})\Big )\Delta ^* \bigg ]}{\mathrm{E}_G\bigg [K'\bigg (\phi \Big ([R(\tilde{\theta })-R_C]L^{*}-C(L^{*})\Big )\bigg ) \phi '\Big ([R(\tilde{\theta })-R_C]L^{*}-C(L^{*})\Big )\bigg ]}, \end{aligned}$$
(24)
with \(\Delta ^* = R(\tilde{\theta })-R_C-C'(L^*)\) where we have used Eq. (10). It follows from Eq. (10) that the covariance term on the right-hand side of Eq. (24) is negative given that \(R(\theta )\) is monotonic in \(\theta\). In this case, the ambiguity premium is more negative under \(K\Big (\phi (U)\Big )\) than under \(\phi (U)\). Greater ambiguity aversion as such reduces the certainty equivalent marginal revenue of loans. \(\square\)
Proof of Proposition 3
Consider the function:
$$\begin{aligned} \Phi (\theta )=-\frac{\phi '' \Big ([R(\theta )-R_C]L^*-C(L^*)\Big )}{\phi ' \Big ([R(\theta )-R_C]L^*-C(L^*)\Big )}. \end{aligned}$$
(25)
Given that \(R'(\theta )\ge (\le ) \ 0\) for all \(\theta \in [\underline{\theta },\overline{\theta }]\), it follows from Eq. (10) that there exists a point, \(\theta ^*\in (\underline{\theta },\overline{\theta })\), at which \(R(\theta ^*)=R_C+C'(L^*)\). Since \(-\phi ''(U)/\phi '(U)\) is a non-increasing function of U, Eq. (25) implies that \(\Phi '(\theta )\le (\ge ) \ 0\) for all \(\theta \in [\underline{\theta },\overline{\theta }]\) given that \(R'(\theta )\ge (\le ) \ 0\) for all \(\theta \in [\underline{\theta },\overline{\theta }]\). Using Eq. (10), we have
$$\begin{aligned} \int _{\underline{\theta }}^{\overline{\theta }}[\Phi (\theta )-\Phi (\theta ^*)] \phi ' \Big ([R(\theta )-R_C]L^*-C(L^*)\Big )[R(\theta )-R_C-C'(L^*)]\mathrm{d}G(\theta )<0. \end{aligned}$$
(26)
It then follows from Eq. (10) that the second term on the right-hand side of Eq. (20) is negative so that \(\mathrm{d}L^{*}/\mathrm{d}\alpha <0\). \(\square\)