M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, C. Wang, Pipe-wire TiO2–Sn@Carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17(6), 3830–3836 (2017). https://doi.org/10.1021/acs.nanolett.7b01152
Article
Google Scholar
J. Cabana, L. Monconduit, D. Larcher, M.R. Palacín, Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22(35), 170 (2010). https://doi.org/10.1002/adma.201000717
Article
Google Scholar
M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013). https://doi.org/10.1021/cr3001884
Article
Google Scholar
J. Liang, H. Hu, H. Park, C. Xiao, S. Ding, U. Paik, X.W. Lou, Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy Environ. Sci. 8(6), 1707–1711 (2015). https://doi.org/10.1039/C5EE01125F
Article
Google Scholar
J. Xie, L. Liu, J. Xia, Y. Zhang, M. Li, Y. Ouyang, S. Nie, X. Wang, Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries. Nano-Micro Lett. 10(1), 12 (2018). https://doi.org/10.1007/s40820-017-0165-1
Article
Google Scholar
M.B. Vazquez-Santos, P. Tartaj, E. Morales, J.M. Amarilla, TiO2 nanostructures as anode materials for Li/Na-ion batteries. Chem. Rec. 18(7–8), 1178–1191 (2018). https://doi.org/10.1002/tcr.201700103
Article
Google Scholar
H. He, Q. Gan, H. Wang, G.L. Xu, X. Zhang et al., Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy 44, 217 (2018). https://doi.org/10.1016/j.nanoen.2017.11.077
Article
Google Scholar
Z. Yan, L. Liu, H. Shu, X. Yang, H. Wang, J. Tan, Q. Zhou, Z. Huang, X. Wang, A tightly integrated sodium titanate–carbon composite as an anode material for rechargeable sodium ion batteries. J. Power Sources 274, 8–14 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.045
Article
Google Scholar
Z. Yan, L. Liu, J. Tan, Q. Zhou, Z. Huang, D. Xia, H. Shu, X. Yang, X. Wang, One-pot synthesis of bicrystalline titanium dioxide spheres with a core–shell structure as anode materials for lithium and sodium ion batteries. J. Power Sources 269(269), 37–45 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.150
Article
Google Scholar
Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 27(42), 6702–6707 (2016). https://doi.org/10.1002/adma.201503015
Article
Google Scholar
S. Wang, L. Xia, L. Yu, L. Zhang, H. Wang, X.W. Lou, Free-standing nitrogen-soped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 6(7), 1502217 (2016). https://doi.org/10.1002/aenm.201502217
Article
Google Scholar
Y. Kim, Y. Kim, A. Choi, S. Woo, D. Mok et al., Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 26(24), 4139–4144 (2014). https://doi.org/10.1002/adma.201305638
Article
Google Scholar
J. Qian, Y. Chen, L. Wu, Y. Cao, X. Ai, H. Yang, High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 48(56), 7070–7072 (2012). https://doi.org/10.1039/c2cc32730a
Article
Google Scholar
K. Zhang, M. Park, L. Zhou, G.-H. Lee, J. Shin, Z. Hu, S.-L. Chou, J. Chen, Y.-M. Kang, Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem. Int. Ed. 55(41), 12822–12826 (2016). https://doi.org/10.1002/anie.201607469
Article
Google Scholar
N. Zhang, X. Han, Y. Liu, X. Hu, Q. Zhao, J. Chen, 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries. Adv. Energy Mater. 5, 1401123 (2015). https://doi.org/10.1002/aenm.201401123
Article
Google Scholar
F. Xie, L. Zhang, D. Su, M. Jaroniec, S.Z. Qiao, Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance. Adv. Mater. 29(24), 1700989 (2017). https://doi.org/10.1002/adma.201700989
Article
Google Scholar
S.M. Oh, J.Y. Hwang, C.S. Yoon, J. Lu, K. Amine, I. Belharouak, Y.K. Sun, High electrochemical performances of microsphere C–TiO2 anode for sodium-ion battery. ACS Appl. Mater. Interfaces 6(14), 11295–11301 (2014). https://doi.org/10.1021/am501772a
Article
Google Scholar
Y.E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei, Z. Zhou, Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7(22), 1701222 (2017). https://doi.org/10.1002/aenm.201701222
Article
Google Scholar
Y. Yang, X. Ji, M. Jing, H. Hou, Y. Zhu, L. Fang, X. Yang, Q. Chen, C.E. Banks, Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J. Mater. Chem. A 3, 5648 (2015). https://doi.org/10.1039/C4TA05611F
Article
Google Scholar
Y. Yang, W. Shi, S. Liao, R. Zhang, S. Leng, Black defect-engineered TiO2 nanocrystals fabricated through square-wave alternating voltage as high-performance anode materials for lithium-ion batteries. J. Alloys Compd. 746, 619–625 (2018). https://doi.org/10.1016/j.jallcom.2018.02.309
Article
Google Scholar
Q. Zhang, H. He, X. Huang, J. Yan, Y. Tang, H. Wang, TiO2@C nanosheets with highly exposed (0 0 1) facets as a high-capacity anode for Na-ion batteries. Chem. Eng. J. 332, 57 (2018). https://doi.org/10.1016/j.cej.2017.09.044
Article
Google Scholar
Y. Liu, F. Zhao, J. Li, Y. Li, J.A. McLeod, L. Liu, Influence of crystal phase on TiO2 nanowire anodes in sodium ion batteries. J. Mater. Chem. A 5, 20005–20013 (2017). https://doi.org/10.1039/C7TA05852G
Article
Google Scholar
H.A. Cha, H.M. Jeong, J.K. Kang, Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries. J. Mater. Chem. A 2(15), 5182–5186 (2014). https://doi.org/10.1039/C4TA00041B
Article
Google Scholar
H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2(20), 2560–2565 (2011). https://doi.org/10.1021/jz2012066
Article
Google Scholar
Y. Lai, W. Liu, J. Li, K. Zhang, F. Qin, M. Wang, J. Fang, High performance sodium storage of Fe-doped mesoporous anatase TiO2/amorphous carbon composite. J. Alloys Compd. 666, 254–261 (2016). https://doi.org/10.1016/j.jallcom.2016.01.101
Article
Google Scholar
J. Ni, S. Fu, C. Wu, J. Maier, Y. Yu, L. Li, Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 28(11), 2259–2265 (2016). https://doi.org/10.1002/adma.201504412
Article
Google Scholar
H. Usui, S. Yoshioka, K. Wasada, M. Shimizu, H. Sakaguchi, Nb-doped rutile TiO2: a potential anode material for Na-ion battery. ACS Appl. Mater. Interfaces 7(12), 6567–6573 (2015). https://doi.org/10.1021/am508670z
Article
Google Scholar
Y. Yang, S. Liao, W. Shi, Y. Wu, R. Zhang, S. Leng, Nitrogen-doped TiO2(B) nanorods as high-performance anode materials for rechargeable sodium-ion batteries. RSC Adv. 7(18), 10885–10890 (2017). https://doi.org/10.1039/C7RA00469A
Article
Google Scholar
H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11(6), 2472–2477 (2011). https://doi.org/10.1021/nl2009058
Article
Google Scholar
P. Zhu, J. Song, D. Lv, D. Wang, C. Jaye, D.A. Fischer, T. Wu, Y. Chen, Mechanism of enhanced carbon cathode performance by nitrogen doping in lithium-sulfur battery: an X-ray absorption spectroscopic study. J. Phys. Chem. C 118(15), 7765–7771 (2014). https://doi.org/10.1021/jp4123634
Article
Google Scholar
Z. Wang, Q. Long, L. Yuan, W. Zhang, X. Hu, Y. Huang, Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55(2), 328–334 (2013). https://doi.org/10.1016/j.carbon.2012.12.072
Article
Google Scholar
D. Li, H. Chen, G. Liu, M. Wei, L.X. Ding, S. Wang, H. Wang, Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 94, 888–894 (2015). https://doi.org/10.1016/j.carbon.2015.07.067
Article
Google Scholar
Y. He, P. Xu, B. Zhang, Y. Du, B. Song, X. Han, H. Peng, Ultrasmall MnO nanoparticles supported on nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. ACS Appl. Mater. Interfaces 9(44), 38401 (2017). https://doi.org/10.1021/acsami.7b09559
Article
Google Scholar
T. Guo, H. Liao, P. Ge, Y. Zhang, Y. Tian, W. Hong, Z. Shi, Fe2O3 embedded in the nitrogen-doped carbon matrix with strong C–O–Fe oxygen-bridge bonds for enhanced sodium storages. Mater. Chem. Phys. 216, 58 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.054
Article
Google Scholar
Y. Wang, C. Wang, Y. Wang, H. Liu, Z. Huang, Superior sodium-ion storage performance of Co3O4@nitrogen-doped carbon: derived from a metal-organic framework. J. Mater. Chem. A 4(15), 5428–5435 (2016). https://doi.org/10.1039/C6TA00236F
Article
Google Scholar
Y. Zhang, C. Wang, H. Hou, G. Zou, X. Ji, Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 7, 1600173 (2017). https://doi.org/10.1002/aenm.201600173
Article
Google Scholar
J. Xia, L. Liu, S. Jamil, J. Xie, H. Yan et al., Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. (in press) (2018). https://doi.org/10.1016/j.ensm.2018.08.005
Article
Google Scholar
T. Jin, Y. Liu, Y. Li, K. Cao, X. Wang, L. Jiao, Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries. Adv. Energy Mater. 7(15), 1700087 (2017). https://doi.org/10.1002/aenm.201700087
Article
Google Scholar
B. Wang, J.L. Cheng, Y.P. Wu, D. Wang, D.N. He, Porous NiO fibers prepared by electrospinning as high performance anode materials for lithium ion batteries. Electrochem. Commun. 23(8), 5–8 (2012). https://doi.org/10.1016/j.elecom.2012.07.003
Article
Google Scholar
T. Jin, Q. Han, Y. Wang, L. Jiao, 1D nanomaterials: design, synthesis, and applications in sodium-ion batteries. Small 14(2), 1703086 (2018). https://doi.org/10.1002/smll.201703086
Article
Google Scholar
Y. Zhong, M. Yang, X. Zhou, Y. Luo, J. Wei, Z. Zhou, Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: rational design of MnCo3/large-area graphene composites. Adv. Mater. 27(5), 806–812 (2015). https://doi.org/10.1002/adma.201404611
Article
Google Scholar
L. Sun, C. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang, H. Fu, Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors. Chem. Eur. J. 20(2), 564–574 (2014). https://doi.org/10.1002/chem.201303345
Article
Google Scholar
C.N. Schmidt, G. Cao, Properties of mesoporous carbon modified carbon felt for anode of all-vanadium redox flow battery. Sci. China Mater. 59(12), 1037–1050 (2016). https://doi.org/10.1007/s40843-016-5114-8
Article
Google Scholar
J. Hou, C. Cao, F. Idrees, X. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9(3), 2556 (2015). https://doi.org/10.1021/nn506394r
Article
Google Scholar
S. Anwer, Y. Huang, J. Liu, J. Liu, M. Xu, Z. Wang, R. Chen, J. Zhang, F. Wu, Nature-inspired Na2Ti3O7 nanosheets-formed three-dimensional microflowers architecture as a high-performance anode material for rechargeable sodium-ion batteries. ACS Appl. Mater. Interfaces 9(13), 11669–11677 (2017). https://doi.org/10.1021/acsami.7b01519
Article
Google Scholar
D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. Huang, L. Zhang, A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 6(6), 1501929 (2016). https://doi.org/10.1002/aenm.201501929
Article
Google Scholar
Y. Wu, X. Liu, Z. Yang, L. Gu, Y. Yu, Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion Batteries. Small 12(26), 3474 (2016). https://doi.org/10.1002/smll.201670126
Article
Google Scholar
S. Liu, Z. Cai, J. Zhou, A. Pan, S. Liang, Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. J. Mater. Chem. A 4(47), 18278 (2016). https://doi.org/10.1039/C6TA08472A
Article
Google Scholar
X. Shi, Z. Zhang, K. Du, Y. Lai, J. Fang, J. Li, Anatase TiO2@C composites with porous structure as an advanced anode material for Na ion batteries. J. Power Sources 330, 1–6 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.132
Article
Google Scholar
L. Ling, Y. Bai, Z. Wang, Q. Ni, G. Chen, Z. Zhou, C. Wu, Remarkable effect of sodium alginate aqueous binder on anatase TiO2 as high-performance anode in sodium ion batteries. ACS Appl. Mater. Interfaces 10(6), 5560 (2018). https://doi.org/10.1021/acsami.7b17659
Article
Google Scholar
R. Zhang, Y. Wang, H. Zhou, J. Lang, J. Xu, Mesoporous TiO2 nanosheets anchored on graphene for ultra-long life Na-ion batteries. Nanotechnology 29(22), 225401 (2018). https://doi.org/10.1088/1361-6528/aab562
Article
Google Scholar
J. Wang, G. Liu, K. Fan, D. Zhao, B. Liu, J. Jiang, D. Qian, C. Yang, J. Li, N-doped carbon coated anatase TiO2 nanoparticles as superior Na-ion battery anodes. J. Colloid Interface Sci. 517, 134–143 (2018). https://doi.org/10.1016/j.jcis.2018.02.001
Article
Google Scholar
J. Chen, Y. Zhang, G. Zou, Z. Huang, S. Li, H. Liao, J. Wang, H. Hou, X. Ji, Size-tunable olive-like anatase TiO2 coated with carbon as superior anode for sodium-ion batteries. Small 12(40), 5554–5563 (2016). https://doi.org/10.1002/smll.201601938
Article
Google Scholar
L. Shao, S. Quan, Y. Liu, Z. Guo, Z. Wang, A novel “gel–sol” strategy to synthesize TiO2 nanorod combining reduced graphene oxide composites. Mater. Lett. 107, 307–310 (2013). https://doi.org/10.1016/j.matlet.2013.06.050
Article
Google Scholar
Y.L. Huang, S.M. Yuen, C.C.M. Ma, C.Y. Chuang, K.C. Yu et al., Morphological, electrical, electromagnetic interference (EMI) shielding, and tribological properties of functionalized multi-walled carbon nanotube/poly methyl methacrylate (PMMA) composites. Compos. Sci. Technol. 69(11), 1991–1996 (2009). https://doi.org/10.1016/j.compscitech.2009.05.006
Article
Google Scholar
H. Wang, Q. Wu, D. Cao, X. Lu, J. Wang, M.K.H. Leung, S. Cheng, L. Lu, C. Niu, Synthesis of SnSb-embedded carbon–silica fibers via electrospinning: effect of TEOS on structural evolutions and electrochemical properties. Mater. Today Energy 1–2, 24–32 (2016). https://doi.org/10.1016/j.mtener.2016.11.003
Article
Google Scholar
X. Lu, H. Wang, Z. Wang, Y. Jiang, D. Cao, G. Yang, Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex situ deposition on carbon nanotubes as anode materials for lithium ion batteries. J. Alloys Compd. 680, 109–115 (2016). https://doi.org/10.1016/j.jallcom.2016.04.128
Article
Google Scholar
Y. Xu, E. Memarzadeh Lotfabad, H. Wang, B. Farbod, Z. Xu, A. Kohandehghan, D. Mitlin, Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem. Commun. 49(79), 8973–8975 (2013). https://doi.org/10.1039/c3cc45254a
Article
Google Scholar
H. Liu, M. Jia, N. Sun, B. Cao, R. Chen, Q. Zhu, F. Wu, N. Qiao, B. Xu, Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 7(49), 27124 (2015). https://doi.org/10.1021/acsami.5b06898
Article
Google Scholar
C. Su, C. Pei, B. Wu, J. Qian, Y. Tan, Highly doped carbon nanobelts with ultrahigh nitrogen content as high-performance supercapacitor materials. Small 13(29), 1700834 (2017). https://doi.org/10.1002/smll.201700834
Article
Google Scholar
F. Yang, Z. Zhang, K. Du, X. Zhao, W. Chen, Y. Lai, J. Li, Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. Carbon 91, 88–95 (2015). https://doi.org/10.1016/j.carbon.2015.04.049
Article
Google Scholar
J. Zhu, C. Chen, Y. Lu, Y. Ge, H. Jiang, K. Fu, X. Zhang, Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 94, 189–195 (2015). https://doi.org/10.1016/j.carbon.2015.06.076
Article
Google Scholar
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
Article
Google Scholar
F. Wen, H. Shu, Y. Zhang, J. Wan, W. Huang, X. Yang, R. Yu, L. Liu, X. Wang, Mesoporous LiMnPO4/C nanoparticles as high performance cathode material for lithium ion batteries. Electrochim. Acta 214, 85–93 (2016). https://doi.org/10.1016/j.electacta.2016.08.042
Article
Google Scholar
J. Ni, S. Fu, C. Wu, Y. Zhao, J. Maier, Y. Yu, L. Li, Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv. Energy Mater. 6(11), 1502568 (2016). https://doi.org/10.1002/aenm.201502568
Article
Google Scholar
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). https://doi.org/10.1038/nmat2612
Article
Google Scholar
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518 (2013). https://doi.org/10.1038/nmat3601
Article
Google Scholar
D. Kaufman, K.L. Hudson, R. Mcclamrock, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
Article
Google Scholar
L. Yi, L. Liu, G. Guo, X. Chen, Y. Zhang, S. Yu, X. Wang, Expanded graphite@SnO2@ polyaniline composite with enhanced performance as anode materials for lithium ion batteries. Electrochim. Acta 240, 63 (2017). https://doi.org/10.1016/j.electacta.2017.04.012
Article
Google Scholar
L.-L. Zhang, S. Duan, X.-L. Yang, G. Peng, G. Liang, Y.-H. Huang, Y. Jiang, S.-B. Ni, M. Li, Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced electrochemical performance as cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 5(23), 12304–12309 (2013). https://doi.org/10.1021/am402434n
Article
Google Scholar
J. Lin, D. Ma, Y. Li, P. Zhang, H. Mi, L. Deng, L. Sun, X. Ren, In situ nitrogen doping of TiO2 by plasma enhanced atomic layer deposition for enhanced sodium storage performance. Dalton Trans. 46(38), 13101 (2017). https://doi.org/10.1039/C7DT03303F
Article
Google Scholar