R.J. Ward, F.A. Zucca, J.H. Duyn, R.R. Crichton, L. Zecca, The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 13(10), 1045–1060 (2014). https://doi.org/10.1016/S1474-4422(14)70117-6
Article
Google Scholar
X. Huang, Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat. Res.-Fund. Mol. M. 533(1), 153–171 (2003). https://doi.org/10.1016/j.mrfmmm.2003.08.023
Article
Google Scholar
Y. Deugnier, Iron and liver cancer. Alcohol 30(2), 145–150 (2003). https://doi.org/10.1016/S0741-8329(03)00129-0
Article
Google Scholar
S. Toyokuni, Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci. 100(1), 9–16 (2009). https://doi.org/10.1111/j.1349-7006.2008.01001.x
Article
Google Scholar
M.F. Bouchard, S. Sauvé, B. Barbeau, M. Legrand, M.-È. Brodeur, T. Bouffard, E. Limoges, D.C. Bellinger, D. Mergler, Intellectual impairment in school-age children exposed to manganese from drinking water. Environ. Health Persp. 119(1), 138 (2011). https://doi.org/10.1289/ehp.1002321
Article
Google Scholar
J. Zhao, X. Yan, T. Zhou, J. Wang, H. Li, P. Zhang, H. Ding, L. Ding, Multi-throughput dynamic microwave-assisted leaching coupled with inductively coupled plasma atomic emission spectrometry for heavy metal analysis in soil. J. Anal. Atom. Spectrom. 30(9), 1920–1926 (2015). https://doi.org/10.1039/C5JA00233H
Article
Google Scholar
B. Feist, B. Mikula, Preconcentration of heavy metals on activated carbon and their determination in fruits by inductively coupled plasma optical emission spectrometry. Food Chem. 147, 302–306 (2014). https://doi.org/10.1016/j.foodchem.2013.10.002
Article
Google Scholar
G. Benipal, A. Harris, C. Srirajayatsayai, A. Tate, V. Topalidis et al., Examination of Al, As, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sb, Se, V, and Zn in sediments collected around the downtown Houston, Texas area, using inductively coupled plasma-optical emission spectroscopy. Microchem. J. 130, 255–262 (2017). https://doi.org/10.1016/j.microc.2016.09.009
Article
Google Scholar
M. Behbahani, N.A.G. Tapeh, M. Mahyari, A.R. Pourali, B.G. Amin, A. Shaabani, Monitoring of trace amounts of heavy metals in different food and water samples by flame atomic absorption spectrophotometer after preconcentration by amine-functionalized graphene nanosheet. Environ. Monit. Assess. 186(11), 7245–7257 (2014). https://doi.org/10.1007/s10661-014-3924-1
Article
Google Scholar
T. Daşbaşı, Ş. Saçmacı, A. Ülgen, Ş. Kartal, A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry. Food Chem. 174, 591–596 (2015). https://doi.org/10.1016/j.foodchem.2014.11.049
Article
Google Scholar
L. Cui, J. Wu, H. Ju, Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 63, 276–286 (2015). https://doi.org/10.1016/j.bios.2014.07.052
Article
Google Scholar
G. Xu, S. Zeng, B. Zhang, M.T. Swihart, K.-T. Yong, P.N. Prasad, New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 116(19), 12234–12327 (2016). https://doi.org/10.1021/acs.chemrev.6b00290
Article
Google Scholar
V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115(11), 4744–4822 (2015). https://doi.org/10.1021/cr500304f
Article
Google Scholar
X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736–12737 (2004). https://doi.org/10.1021/ja040082h
Article
Google Scholar
Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.S. Fernando et al., Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128(24), 7756–7757 (2006). https://doi.org/10.1021/ja062677d
Article
Google Scholar
M. Bottini, C. Balasubramanian, M.I. Dawson, A. Bergamaschi, S. Bellucci, T. Mustelin, Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J. Phys. Chem. B 110(2), 831–836 (2006). https://doi.org/10.1021/jp055503b
Article
Google Scholar
H. Gonçalves, P.A. Jorge, J. Fernandes, J.C.E. da Silva, Hg(II) sensing based on functionalized carbon dots obtained by direct laser ablation. Sensor. Actuat. B-Chem. 145(2), 702–707 (2010). https://doi.org/10.1016/j.snb.2010.01.031
Article
Google Scholar
X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, N. Koshizaki, Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem. Commun. 47(3), 932–934 (2011). https://doi.org/10.1039/C0CC03552A
Article
Google Scholar
S. Hu, J. Liu, J. Yang, Y. Wang, S. Cao, Laser synthesis and size tailor of carbon quantum dots. J. Nanopart. Res. 13(12), 7247–7252 (2011). https://doi.org/10.1007/s11051-011-0638-y
Article
Google Scholar
L. Bao, Z.L. Zhang, Z.Q. Tian, L. Zhang, C. Liu, Y. Lin, B. Qi, D.W. Pang, Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv. Mater. 23(48), 5801–5806 (2011). https://doi.org/10.1002/adma.201102866
Article
Google Scholar
M. Liu, Y. Xu, F. Niu, J.J. Gooding, J. Liu, Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst 141(9), 2657–2664 (2016). https://doi.org/10.1039/C5AN02231B
Article
Google Scholar
Y. Hou, Q. Lu, J. Deng, H. Li, Y. Zhang, One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal. Chim. Acta 866, 69–74 (2015). https://doi.org/10.1016/j.aca.2015.01.039
Article
Google Scholar
J. Deng, Q. Lu, N. Mi, H. Li, M. Liu et al., Electrochemical synthesis of carbon nanodots directly from alcohols. Chem.-Eur. J. 20(17), 4993–4999 (2014). https://doi.org/10.1002/chem.201304869
Article
Google Scholar
H. Tao, K. Yang, Z. Ma, J. Wan, Y. Zhang, Z. Kang, Z. Liu, In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8(2), 281–290 (2012). https://doi.org/10.1002/smll.201101706
Article
Google Scholar
D. Sun, R. Ban, P.-H. Zhang, G.-H. Wu, J.-R. Zhang, J.-J. Zhu, Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 64, 424–434 (2013). https://doi.org/10.1016/j.Carbon2013.07.095
Article
Google Scholar
M.M.F. Chang, I.R. Ginjom, M. Ngu-Schwemlein, S.M. Ng, Synthesis of yellow fluorescent carbon dots and their application to the determination of chromium(III) with selectivity improved by pH tuning. Microchim. Acta 183(6), 1899–1907 (2016). https://doi.org/10.1007/s00604-016-1819-2
Article
Google Scholar
Y. Hu, J. Yang, J. Tian, L. Jia, J.-S. Yu, Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon 77, 775–782 (2014). https://doi.org/10.1016/j.Carbon2014.05.081
Article
Google Scholar
V. Subramanian, H. Zhu, R. Vajtai, P. Ajayan, B. Wei, Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 109(43), 20207–20214 (2005). https://doi.org/10.1021/jp0543330
Article
Google Scholar
G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo, N. Penazzi, Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. J. Power Sources 160(1), 516–522 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.067
Article
Google Scholar
Q. Liang, W. Ma, Y. Shi, Z. Li, X. Yang, Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60, 421–428 (2013). https://doi.org/10.1016/j.Carbon2013.04.055
Article
Google Scholar
Q. Xu, P. Pu, J. Zhao, C. Dong, C. Gao, Y. Chen, J. Chen, Y. Liu, H. Zhou, Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection. J. Mater. Chem. A 3(2), 542–546 (2015). https://doi.org/10.1039/C4TA05483K
Article
Google Scholar
J.-Y. Li, Y. Liu, Q.-W. Shu, J.-M. Liang, F. Zhang, X.-P. Chen, X.-Y. Deng, M.T. Swihart, K.-J. Tan, One-pot hydrothermal synthesis of carbon dots with efficient up-and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay. Langmuir 33(4), 1043–1050 (2017). https://doi.org/10.1021/acs.langmuir.6b04225
Article
Google Scholar
V.N. Mehta, S. Jha, H. Basu, R.K. Singhal, S.K. Kailasa, One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensor. Actuat. B-Chem. 213, 434–443 (2015). https://doi.org/10.1016/j.snb.2015.02.104
Article
Google Scholar
L. Wang, H.S. Zhou, Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal. Chem. 86(18), 8902–8905 (2014). https://doi.org/10.1021/ac502646x
Article
Google Scholar
T.N.J.I. Edison, R. Atchudan, J.-J. Shim, S. Kalimuthu, B.-C. Ahn, Y.R. Lee, Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging. J. Photoch. Photobio. B 158, 235–242 (2016). https://doi.org/10.1016/j.jphotobiol.2016.03.010
Article
Google Scholar
R. Atchudan, T.N.J.I. Edison, M.G. Sethuraman, Y.R. Lee, Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume. Appl. Surf. Sci. 384, 432–441 (2016). https://doi.org/10.1016/j.apsusc.2016.05.054
Article
Google Scholar
Y. Liu, Q. Zhou, J. Li, M. Lei, X. Yan, Selective and sensitive chemosensor for lead ions using fluorescent carbon dots prepared from chocolate by one-step hydrothermal method. Sensor. Actuat. B-Chem. 237, 597–604 (2016). https://doi.org/10.1016/j.snb.2016.06.092
Article
Google Scholar
J. Yu, N. Song, Y.-K. Zhang, S.-X. Zhong, A.-J. Wang, J. Chen, Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sensor. Actuat. B-Chem. 214, 29–35 (2015). https://doi.org/10.1016/j.snb.2015.03.006
Article
Google Scholar
J. Wei, X. Zhang, Y. Sheng, J. Shen, P. Huang, S. Guo, J. Pan, B. Feng, Dual functional carbon dots derived from cornflour via a simple one-pot hydrothermal route. Mater. Lett. 123, 107–111 (2014). https://doi.org/10.1016/j.matlet.2014.02.090
Article
Google Scholar
L. Li, X. Wang, Z. Fu, F. Cui, One-step hydrothermal synthesis of nitrogen-and sulfur-co-doped carbon dots from ginkgo leaves and application in biology. Mater. Lett. 196, 300–303 (2017). https://doi.org/10.1016/j.matlet.2017.03.112
Article
Google Scholar
R. Liu, J. Zhang, M. Gao, Z. Li, J. Chen, D. Wu, P. Liu, A facile microwave-hydrothermal approach towards highly photoluminescent carbon dots from goose feathers. RSC Adv. 5(6), 4428–4433 (2015). https://doi.org/10.1039/C4RA12077A
Article
Google Scholar
S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem. Commun. 48(70), 8835–8837 (2012). https://doi.org/10.1039/c2cc33796g
Article
Google Scholar
R. Purbia, S. Paria, A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosens. Bioelectron. 79, 467–475 (2016). https://doi.org/10.1016/j.bios.2015.12.087
Article
Google Scholar
J. Niu, H. Gao, Synthesis and drug detection performance of nitrogen-doped carbon dots. J. Lumin. 149, 159–162 (2014). https://doi.org/10.1016/j.jlumin.2014.01.026
Article
Google Scholar
S. Chandra, A.R. Chowdhuri, D. Laha, S.K. Sahu, Fabrication of nitrogen-and phosphorous-doped carbon dots by the pyrolysis method for iodide and iron(III) sensing. Luminescence 33(2), 336–344 (2017). https://doi.org/10.1002/bio.3418
Article
Google Scholar
L.-H. Mao, W.-Q. Tang, Z.-Y. Deng, S.-S. Liu, C.-F. Wang, S. Chen, Facile access to white fluorescent carbon dots toward light-emitting devices. Ind. Eng. Chem. Res. 53(15), 6417–6425 (2014). https://doi.org/10.1021/ie500602n
Article
Google Scholar
F. Wang, S. Pang, L. Wang, Q. Li, M. Kreiter, C.-Y. Liu, One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem. Mater. 22(16), 4528–4530 (2010). https://doi.org/10.1021/cm101350u
Article
Google Scholar
H. He, X. Wang, Z. Feng, T. Cheng, X. Sun, Y. Sun, Y. Xia, S. Wang, J. Wang, X. Zhang, Rapid microwave-assisted synthesis of ultra-bright fluorescent carbon dots for live cell staining, cell-specific targeting and in vivo imaging. J. Mater. Chem. B 3(24), 4786–4789 (2015). https://doi.org/10.1039/C5TB00570A
Article
Google Scholar
H. Li, Y. Xu, J. Ding, L. Zhao, T. Zhou, H. Ding, Y. Chen, L. Ding, Microwave-assisted synthesis of highly luminescent N-and S-co-doped carbon dots as a ratiometric fluorescent probe for levofloxacin. Microchim. Acta 185(2), 104 (2018). https://doi.org/10.1007/s00604-017-2619-z
Article
Google Scholar
Q. Xiao, Y. Liang, F. Zhu, S. Lu, S. Huang, Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing. Microchim. Acta 184(7), 2429–2438 (2017). https://doi.org/10.1007/s00604-017-2242-z
Article
Google Scholar
W. Kwon, S.-W. Rhee, Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles. Chem. Commun. 48(43), 5256–5258 (2012). https://doi.org/10.1039/c2cc31687k
Article
Google Scholar
J. Zhang, F. Abbasi, J. Claverie, An efficient templating approach for the synthesis of redispersible size-controllable carbon quantum dots from graphitic polymeric micelles. Chem.-Eur. J. 21(43), 15142–15147 (2015). https://doi.org/10.1002/chem.201502158
Article
Google Scholar
K. Linehan, H. Doyle, Efficient one-pot synthesis of highly monodisperse carbon quantum dots. RSC Adv. 4(1), 18–21 (2014). https://doi.org/10.1039/C3RA45083J
Article
Google Scholar
R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, Q. Li, An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. 121(25), 4668–4671 (2009). https://doi.org/10.1002/ange.200900652
Article
Google Scholar
Y. Yang, D. Wu, S. Han, P. Hu, R. Liu, Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft–hard template approach. Chem. Commun. 49(43), 4920–4922 (2013). https://doi.org/10.1039/c3cc38815h
Article
Google Scholar
Z.L. Wu, Z.X. Liu, Y.H. Yuan, Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. J. Mater. Chem. B 5(21), 3794–3809 (2017). https://doi.org/10.1039/C7TB00363C
Article
Google Scholar
X. Sun, Y. Lei, Fluorescent carbon dots and their sensing applications. TrAC-Trend. Anal. Chem. 89, 163–180 (2017). https://doi.org/10.1016/j.trac.2017.02.001
Article
Google Scholar
S.-L. Hu, K.-Y. Niu, J. Sun, J. Yang, N.-Q. Zhao, X.-W. Du, One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 19(4), 484–488 (2009). https://doi.org/10.1039/B812943F
Article
Google Scholar
S. Qu, X. Wang, Q. Lu, X. Liu, L. Wang, A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem. Int.-Ed. 51(49), 12215–12218 (2012). https://doi.org/10.1002/anie.201206791
Article
Google Scholar
D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang et al., Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5(24), 12272–12277 (2013). https://doi.org/10.1039/c3nr04402e
Article
Google Scholar
Y. Dong, R. Wang, H. Li, J. Shao, Y. Chi, X. Lin, G. Chen, Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 50(8), 2810–2815 (2012). https://doi.org/10.1016/j.Carbon2012.02.046
Article
Google Scholar
C. Liu, P. Zhang, X. Zhai, F. Tian, W. Li, J. Yang, Y. Liu, H. Wang, W. Wang, W. Liu, Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33(13), 3604–3613 (2012). https://doi.org/10.1016/j.biomaterials.2012.01.052
Article
Google Scholar
Z. Yang, M. Xu, Y. Liu, F. He, F. Gao, Y. Su, H. Wei, Y. Zhang, Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale 6(3), 1890–1895 (2014). https://doi.org/10.1039/C3NR05380F
Article
Google Scholar
A.B. Bourlinos, G. Trivizas, M.A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis, A. Bakandritsos, K. Hola, O. Kozak, R. Zboril, Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon 83, 173–179 (2015). https://doi.org/10.1016/j.Carbon2014.11.032
Article
Google Scholar
Z. Qian, X. Shan, L. Chai, J. Ma, J. Chen, H. Feng, Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl. Mater. Interfaces. 6(9), 6797–6805 (2014). https://doi.org/10.1021/am500403n
Article
Google Scholar
F. Qiao, J. Wang, S. Ai, L. Li, As a new peroxidase mimetics: The synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine. Sensor. Actuat. B-Chem. 216, 418–427 (2015). https://doi.org/10.1016/j.snb.2015.04.074
Article
Google Scholar
N. Gong, H. Wang, S. Li, Y. Deng, X.A. Chen, L. Ye, W. Gu, Microwave-assisted polyol synthesis of gadolinium-doped green luminescent carbon dots as a bimodal nanoprobe. Langmuir 30(36), 10933–10939 (2014). https://doi.org/10.1021/la502705g
Article
Google Scholar
H. Li, F.-Q. Shao, H. Huang, J.-J. Feng, A.-J. Wang, Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sensor. Actuat. B-Chem. 226, 506–511 (2016). https://doi.org/10.1016/j.snb.2015.12.018
Article
Google Scholar
M. Ganiga, J. Cyriac, FRET based ammonia sensor using carbon dots. Sensor. Actuat. B-Chem. 225, 522–528 (2016). https://doi.org/10.1016/j.snb.2015.11.074
Article
Google Scholar
C. Han, R. Wang, K. Wang, H. Xu, M. Sui, J. Li, K. Xu, Highly fluorescent carbon dots as selective and sensitive on-off-on probes for iron(III) ion and apoferritin detection and imaging in living cells. Biosens. Bioelectron. 83, 229–236 (2016). https://doi.org/10.1016/j.bios.2016.04.066
Article
Google Scholar
R.K. Das, S. Mohapatra, Highly luminescent, heteroatom-doped carbon quantum dots for ultrasensitive sensing of glucosamine and targeted imaging of liver cancer cells. J. Mater. Chem. B 5(11), 2190–2197 (2017). https://doi.org/10.1039/C6TB03141B
Article
Google Scholar
K. Jiang, S. Sun, L. Zhang, Y. Lu, A. Wu, C. Cai, H. Lin, Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int.-Ed. 54(18), 5360–5363 (2015). https://doi.org/10.1002/anie.201501193
Article
Google Scholar
L. Pan, S. Sun, A. Zhang, K. Jiang, L. Zhang, C. Dong, Q. Huang, A. Wu, H. Lin, Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv. Mater. 27(47), 7782–7787 (2015). https://doi.org/10.1002/adma.201503821
Article
Google Scholar
Y. Zhang, J. He, Facile synthesis of S, N co-doped carbon dots and investigation of their photoluminescence properties. Phys. Chem. Chem. Phys. 17(31), 20154–20159 (2015). https://doi.org/10.1039/C5CP03498A
Article
Google Scholar
X. Li, S. Zhang, S.A. Kulinich, Y. Liu, H. Zeng, Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci. Rep. 4, 4976 (2014). https://doi.org/10.1038/srep04976
Article
Google Scholar
H. Wang, C. Sun, X. Chen, Y. Zhang, V.L. Colvin et al., Excitation wavelength independent visible color emission of carbon dots. Nanoscale 9(5), 1909–1915 (2017). https://doi.org/10.1039/C6NR09200D
Article
Google Scholar
X. Meng, Q. Chang, C. Xue, J. Yang, S. Hu, Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties. Chem. Commun. 53(21), 3074–3077 (2017). https://doi.org/10.1039/C7CC00461C
Article
Google Scholar
C. Wang, Z. Xu, H. Cheng, H. Lin, M.G. Humphrey, C. Zhang, A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon 82, 87–95 (2015). https://doi.org/10.1016/j.Carbon2014.10.035
Article
Google Scholar
X. Jia, J. Li, E. Wang, One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 4(18), 5572–5575 (2012). https://doi.org/10.1039/c2nr31319g
Article
Google Scholar
S.H. Jin, D.H. Kim, G.H. Jun, S.H. Hong, S. Jeon, Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7(2), 1239–1245 (2013). https://doi.org/10.1021/nn304675g
Article
Google Scholar
Y. Dong, H. Pang, H.B. Yang, C. Guo, J. Shao, Y. Chi, C.M. Li, T. Yu, Carbon-based dots Co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem. Int.-Ed. 52(30), 7800–7804 (2013). https://doi.org/10.1002/anie.201301114
Article
Google Scholar
H. Li, H. Ming, Y. Liu, H. Yu, X. He, H. Huang, K. Pan, Z. Kang, S.-T. Lee, Fluorescent carbon nanoparticles: electrochemical synthesis and their pH sensitive photoluminescence properties. New J. Chem. 35(11), 2666–2670 (2011). https://doi.org/10.1039/c1nj20575g
Article
Google Scholar
P. Yu, X. Wen, Y.-R. Toh, J. Tang, Temperature-dependent fluorescence in carbon dots. J. Phys. Chem. C 116(48), 25552–25557 (2012). https://doi.org/10.1021/jp307308z
Article
Google Scholar
P.-C. Chen, Y.-N. Chen, P.-C. Hsu, C.-C. Shih, H.-T. Chang, Photoluminescent organosilane-functionalized carbon dots as temperature probes. Chem. Commun. 49(16), 1639–1641 (2013). https://doi.org/10.1039/c3cc38486a
Article
Google Scholar
L. Cao, X. Wang, M.J. Meziani, F. Lu, H. Wang et al., Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129(37), 11318–11319 (2007). https://doi.org/10.1021/ja073527l
Article
Google Scholar
A. Salinas-Castillo, M. Ariza-Avidad, C. Pritz, M. Camprubí-Robles, B. Fernández et al., Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem. Commun. 49(11), 1103–1105 (2013). https://doi.org/10.1039/c2cc36450f
Article
Google Scholar
B. Yin, J. Deng, X. Peng, Q. Long, J. Zhao, Q. Lu, Q. Chen, H. Li, H. Tang, Y. Zhang, Green synthesis of carbon dots with down-and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 138(21), 6551–6557 (2013). https://doi.org/10.1039/c3an01003a
Article
Google Scholar
C. Zhang, L. Du, C. Liu, Y. Li, Z. Yang, Y.-C. Cao, Photostable epoxy polymerized carbon quantum dots luminescent thin films and the performance study. Results Phys. 6, 767–771 (2016). https://doi.org/10.1016/j.rinp.2016.10.013
Article
Google Scholar
J.C.E. da Silva, H.M. Gonçalves, Analytical and bioanalytical applications of carbon dots. TrAC-Trend. Anal. Chem. 30(8), 1327–1336 (2011). https://doi.org/10.1016/j.trac.2011.04.009
Article
Google Scholar
H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H.A. Tsang, X. Yang, S.T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int.-Ed. 49(26), 4430–4434 (2010). https://doi.org/10.1002/anie.200906154
Article
Google Scholar
W. Kwon, G. Lee, S. Do, T. Joo, S.W. Rhee, Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials. Small 10(3), 506–513 (2014). https://doi.org/10.1002/smll.201301770
Article
Google Scholar
S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8(2), 355–381 (2015). https://doi.org/10.1007/s12274-014-0644-3
Article
Google Scholar
H. Ding, S.-B. Yu, J.-S. Wei, H.-M. Xiong, Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10(1), 484–491 (2015). https://doi.org/10.1021/acsnano.5b05406
Article
Google Scholar
Q. Li, T.Y. Ohulchanskyy, R. Liu, K. Koynov, D. Wu, A. Best, R. Kumar, A. Bonoiu, P.N. Prasad, Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J. Phys. Chem. C 114(28), 12062–12068 (2010). https://doi.org/10.1021/jp911539r
Article
Google Scholar
M.J. Krysmann, A. Kelarakis, P. Dallas, E.P. Giannelis, Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 134(2), 747–750 (2011). https://doi.org/10.1021/ja204661r
Article
Google Scholar
Z. Ma, H. Ming, H. Huang, Y. Liu, Z. Kang, One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J. Chem. 36(4), 861–864 (2012). https://doi.org/10.1039/c2nj20942j
Article
Google Scholar
X. Wen, P. Yu, Y.-R. Toh, X. Ma, J. Tang, On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chem. Commun. 50(36), 4703–4706 (2014). https://doi.org/10.1039/C4CC01213E
Article
Google Scholar
G. Jiang, T. Jiang, X. Li, Z. Wei, X. Du, X. Wang, Boronic acid functionalized N-doped carbon quantum dots as fluorescent probe for selective and sensitive glucose determination. Mater. Res. Express 1, 2 (2014). https://doi.org/10.1088/2053-1591/1/2/025708
Article
Google Scholar
Z. Zhang, Y. Shi, Y. Pan, X. Cheng, L. Zhang, J. Chen, M.-J. Li, C. Yi, Quinoline derivative-functionalized carbon dots as a fluorescent nanosensor for sensing and intracellular imaging of Zn2+. J. Mater. Chem. B 2(31), 5020–5027 (2014). https://doi.org/10.1039/C4TB00677A
Article
Google Scholar
M. Amjadi, Z. Abolghasemi-Fakhri, T. Hallaj, Carbon dots-silver nanoparticles fluorescence resonance energy transfer system as a novel turn-on fluorescent probe for selective determination of cysteine. J. Photoch. Photobio. A 309, 8–14 (2015). https://doi.org/10.1016/j.jphotochem.2015.04.016
Article
Google Scholar
F. Qu, H. Pei, R. Kong, S. Zhu, L. Xia, Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta 165, 136–142 (2017). https://doi.org/10.1016/j.talanta.2016.11.051
Article
Google Scholar
Y. Guo, L. Yang, W. Li, X. Wang, Y. Shang, B. Li, Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a turn-on fluorescent probe for cystein, glutathione and homocysteine. Microchim. Acta 183(4), 1409–1416 (2016). https://doi.org/10.1007/s00604-016-1779-6
Article
Google Scholar
L. Li, C. Wang, K. Liu, Y. Wang, K. Liu, Y. Lin, Hexagonal cobalt oxyhydroxide–carbon dots hybridized surface: high sensitive fluorescence turn-on probe for monitoring of ascorbic acid in rat brain following brain ischemia. Anal. Chem. 87(6), 3404–3411 (2015). https://doi.org/10.1021/ac5046609
Article
Google Scholar
C. Yuan, B. Liu, F. Liu, M.-Y. Han, Z. Zhang, Fluorescence turn on detection of mercuric ion based on bis (dithiocarbamato) copper(II) complex functionalized carbon nanodots. Anal. Chem. 86(2), 1123–1130 (2014). https://doi.org/10.1021/ac402894z
Article
Google Scholar
A. Cayuela, M.L. Soriano, M.C. Carrión, M. Valcárcel, Functionalized carbon dots as sensors for gold nanoparticles in spiked samples: formation of nanohybrids. Anal. Chim. Acta 820, 133–138 (2014). https://doi.org/10.1016/j.aca.2014.02.010
Article
Google Scholar
P. Zheng, N. Wu, Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chem.-Asian J. 12(18), 2343–2353 (2017). https://doi.org/10.1002/asia.201700814
Article
Google Scholar
I.L. Medintz, A.R. Clapp, H. Mattoussi, E.R. Goldman, B. Fisher, J.M. Mauro, Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2(9), 630–638 (2003). https://doi.org/10.1038/nmat961
Article
Google Scholar
Y. Zhang, X. Liu, Y. Fan, X. Guo, L. Zhou, Y. Lv, J. Lin, One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields. Nanoscale 8(33), 15281–15287 (2016). https://doi.org/10.1039/C6NR03125K
Article
Google Scholar
C. Albrecht, J.R. Lakowicz, Principles of fluorescence spectroscopy. Anal. Bioanal. Chem. 390(5), 1223–1224 (2008). https://doi.org/10.1007/s00216-007-1822-x
Article
Google Scholar
S. Chen, Y.-L. Yu, J.-H. Wang, Inner filter effect-based fluorescent sensing systems: a review. Anal. Chim. Acta 999, 13–26 (2017). https://doi.org/10.1016/j.aca.2017.10.026
Article
Google Scholar
X. Gong, W. Lu, M.C. Paau, Q. Hu, X. Wu, S. Shuang, C. Dong, M.M. Choi, Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular imaging. Anal. Chim. Acta 861, 74–84 (2015). https://doi.org/10.1016/j.aca.2014.12.045
Article
Google Scholar
J. Shangguan, J. Huang, D. He, X. He, K. Wang, R. Ye, X. Yang, T. Qing, J. Tang, Highly Fe3+-selective fluorescent nanoprobe based on ultrabright N/P codoped carbon dots and its application in biological samples. Anal. Chem. 89(14), 7477–7484 (2017). https://doi.org/10.1021/acs.analchem.7b01053
Article
Google Scholar
W. Liu, H. Diao, H. Chang, H. Wang, T. Li, W. Wei, Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sensor. Actuat. B-Chem. 241, 190–198 (2017). https://doi.org/10.1016/j.snb.2016.10.068
Article
Google Scholar
M. Rong, Y. Feng, Y. Wang, X. Chen, One-pot solid phase pyrolysis synthesis of nitrogen-doped carbon dots for Fe3+ sensing and bioimaging. Sensor. Actuat. B-Chem. 245, 868–874 (2017). https://doi.org/10.1016/j.snb.2017.02.014
Article
Google Scholar
Y. Liu, W. Duan, W. Song, J. Liu, C. Ren, J. Wu, D. Liu, H. Chen, Red emission B, N, S-co-doped carbon dots for colorimetric and fluorescent dual mode detection of Fe3+ ions in complex biological fluids and living cells. ACS Appl. Mater. Interfaces. 9(14), 12663–12672 (2017). https://doi.org/10.1021/acsami.6b15746
Article
Google Scholar
J. Wu, Y. Feng, Y. Shao, Y. Sun, High quality nitrogen and silicon Co-doped carbon dots (N/Si-CDs) for Fe3+ sensing. J. Nanosci. Nanotechnol. 18(6), 4196–4203 (2018). https://doi.org/10.1166/jnn.2018.15206
Article
Google Scholar
S. Chandra, D. Laha, A. Pramanik, A. Ray Chowdhuri, P. Karmakar, S.K. Sahu, Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe3+ ions in cancer cells. Luminescence 31(1), 81–87 (2016). https://doi.org/10.1002/bio.2927
Article
Google Scholar
G. He, M. Xu, M. Shu, X. Li, Z. Yang, L. Zhang, Y. Su, N. Hu, Y. Zhang, Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe3+ detection and cellular bioimaging. Nanotechnology 27, 39 (2016). https://doi.org/10.1088/0957-4484/27/39/395706
Article
Google Scholar
W. Lu, X. Gong, M. Nan, Y. Liu, S. Shuang, C. Dong, Comparative study for N and S doped carbon dots: Synthesis, characterization and applications for Fe3+ probe and cellular imaging. Anal. Chim. Acta 898, 116–127 (2015). https://doi.org/10.1016/j.aca.2015.09.050
Article
Google Scholar
A. Iqbal, Y. Tian, X. Wang, D. Gong, Y. Guo, K. Iqbal, Z. Wang, W. Liu, W. Qin, Carbon dots prepared by solid state method via citric acid and 1, 10-phenanthroline for selective and sensing detection of Fe2+ and Fe3+. Sensor. Actuat. B-Chem. 237, 408–415 (2016). https://doi.org/10.1016/j.snb.2016.06.126
Article
Google Scholar
Y. Song, C. Zhu, J. Song, H. Li, D. Du, Y. Lin, Drug-derived bright and color-tunable N-doped carbon dots for cell imaging and sensitive detection of Fe3+ in living cells. ACS Appl. Mater. Interfaces. 9(8), 7399–7405 (2017). https://doi.org/10.1021/acsami.6b13954
Article
Google Scholar
R. Yang, X. Guo, L. Jia, Y. Zhang, Z. Zhao, F. Lonshakov, Green preparation of carbon dots with mangosteen pulp for the selective detection of Fe3+ ions and cell imaging. Appl. Surf. Sci. 423, 426–432 (2017). https://doi.org/10.1016/j.apsusc.2017.05.252
Article
Google Scholar
L. Ge, H. Yu, H. Ren, B. Shi, Q. Guo, W. Gao, Z. Li, J. Li, Photoluminescence of carbon dots and their applications in Hela cell imaging and Fe3+ ion detection. J. Mater. Sci. 52(17), 9979–9989 (2017). https://doi.org/10.1007/s10853-017-1178-3
Article
Google Scholar
K. Kim, J. Kim, Synthesis of carbon quantum dots from jujubes for detection of iron(III) ions. J. Nanosci. Nanotechnol. 18(2), 1320–1322 (2018). https://doi.org/10.1166/jnn.2018.14901
Article
Google Scholar
J. Shen, S. Shang, X. Chen, D. Wang, Y. Cai, Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater. Sci. Eng., C 76, 856–864 (2017). https://doi.org/10.1016/j.msec.2017.03.178
Article
Google Scholar
A.M. Aslandaş, N. Balcı, M. Arık, H. Şakiroğlu, Y. Onganer, K. Meral, Liquid nitrogen-assisted synthesis of fluorescent carbon dots from Blueberry and their performance in Fe3+ detection. Appl. Surf. Sci. 356, 747–752 (2015). https://doi.org/10.1016/j.apsusc.2015.08.147
Article
Google Scholar
C. Sun, Y. Zhang, P. Wang, Y. Yang, Y. Wang, J. Xu, Y. Wang, W.Y. William, Synthesis of nitrogen and sulfur co-doped carbon dots from garlic for selective detection of Fe3+. Nanoscale Res. Lett. 11(1), 110 (2016). https://doi.org/10.1186/s11671-016-1326-8
Article
Google Scholar
X. Wen, L. Shi, G. Wen, Y. Li, C. Dong, J. Yang, S. Shuang, Green synthesis of carbon nanodots from cotton for multicolor imaging, patterning, and sensing. Sensor. Actuat. B-Chem. 221, 769–776 (2015). https://doi.org/10.1016/j.snb.2015.07.019
Article
Google Scholar
R. Bandi, B.R. Gangapuram, R. Dadigala, R. Eslavath, S.S. Singh, V. Guttena, Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Adv. 6(34), 28633–28639 (2016). https://doi.org/10.1039/C6RA01669C
Article
Google Scholar
A. Tyagi, K.M. Tripathi, N. Singh, S. Choudhary, R.K. Gupta, Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Adv. 6(76), 72423–72432 (2016). https://doi.org/10.1039/C6RA10488F
Article
Google Scholar
R. Atchudan, T.N.J.I. Edison, D. Chakradhar, S. Perumal, J.-J. Shim, Y.R. Lee, Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sensor. Actuat. B-Chem. 246, 497–509 (2017). https://doi.org/10.1016/j.snb.2017.02.119
Article
Google Scholar
C. Wang, K. Jiang, Z. Xu, H. Lin, C. Zhang, Glutathione modified carbon-dots: from aggregation-induced emission enhancement properties to a turn-on sensing of temperature/Fe3+ ions in cells. Inorg. Chem. Front. 3(4), 514–522 (2016). https://doi.org/10.1039/C5QI00273G
Article
Google Scholar
M. Deng, S. Wang, C. Liang, H. Shang, S. Jiang, A FRET fluorescent nanosensor based on carbon dots for ratiometric detection of Fe3+ in aqueous solution. RSC Adv. 6(32), 26936–26940 (2016). https://doi.org/10.1039/C6RA02679F
Article
Google Scholar
L. Song, Y. Cui, C. Zhang, Z. Hu, X. Liu, Microwave-assisted facile synthesis of yellow fluorescent carbon dots from o-phenylenediamine for cell imaging and sensitive detection of Fe3+ and H2O2. RSC Adv. 6(21), 17704–17712 (2016). https://doi.org/10.1039/C6RA02554D
Article
Google Scholar
G.J. Brewer, Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol. 23(2), 319–326 (2009). https://doi.org/10.1021/tx900338d
Article
Google Scholar
G.J. Brewer, The risks of free copper in the body and the development of useful anticopper drugs. Curr. Opin. Clin. Nutr. 11(6), 727–732 (2008). https://doi.org/10.1097/MCO.0b013e328314b678
Article
Google Scholar
E. Gaggelli, H. Kozlowski, D. Valensin, G. Valensin, Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev. 106(6), 1995–2044 (2006). https://doi.org/10.1021/cr040410w
Article
Google Scholar
Q. Liu, N. Zhang, H. Shi, W. Ji, W. Yuan, Q. Hu, One-step microwave synthesis of carbon dots for highly sensitive and selective detection of copper ion in aqueous solution. New J. Chem. 42(4), 3097–3101 (2018). https://doi.org/10.1039/C7NJ05000C
Article
Google Scholar
D. Chen, M. Xu, W. Wu, S. Li, Multi-color fluorescent carbon dots for wavelength-selective and ultrasensitive Cu2+ sensing. J. Alloys Compd. 701, 75–81 (2017). https://doi.org/10.1016/j.jallcom.2017.01.124
Article
Google Scholar
G. Gedda, C.-Y. Lee, Y.-C. Lin, H.-F. Wu, Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions. Sensor. Actuat. B-Chem. 224, 396–403 (2016). https://doi.org/10.1016/j.snb.2015.09.065
Article
Google Scholar
L. Liu, H. Gong, D. Li, L. Zhao, Synthesis of carbon dots from pear juice for fluorescence detection of Cu2+ ion in water. J. Nanosci. Nanotechnology 18(8), 5327–5332 (2018). https://doi.org/10.1166/jnn.2018.15356
Article
Google Scholar
A. Kumari, A. Kumar, S.K. Sahu, S. Kumar, Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging. Sensor. Actuat. B-Chem. 254, 197–205 (2018). https://doi.org/10.1016/j.snb.2017.07.075
Article
Google Scholar
Y. Liu, Y. Zhao, Y. Zhang, One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sensor. Actuat. B-Chem. 196, 647–652 (2014). https://doi.org/10.1016/j.snb.2014.02.053
Article
Google Scholar
Z. Fu, F. Cui, Thiosemicarbazide chemical functionalized carbon dots as a fluorescent nanosensor for sensing Cu2+ and intracellular imaging. RSC Adv. 6(68), 63681–63688 (2016). https://doi.org/10.1039/C6RA10168B
Article
Google Scholar
M. Vedamalai, A.P. Periasamy, C.-W. Wang, Y.-T. Tseng, L.-C. Ho, C.-C. Shih, H.-T. Chang, Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale 6(21), 13119–13125 (2014). https://doi.org/10.1039/C4NR03213F
Article
Google Scholar
H. Rao, W. Liu, Z. Lu, Y. Wang, H. Ge, P. Zou, X. Wang, H. He, X. Zeng, Y. Wang, Silica-coated carbon dots conjugated to CdTe quantum dots: a ratiometric fluorescent probe for copper(II). Microchim. Acta 183(2), 581–588 (2016). https://doi.org/10.1007/s00604-015-1682-6
Article
Google Scholar
C. Liu, D. Ning, C. Zhang, Z. Liu, R. Zhang, J. Zhao, T. Zhao, B. Liu, Z. Zhang, Dual-colored carbon dot ratiometric fluorescent test paper based on a specific spectral energy transfer for semiquantitative assay of copper ions. ACS Appl. Mater. Interfaces. 9(22), 18897–18903 (2017). https://doi.org/10.1021/acsami.7b05827
Article
Google Scholar
A. Zhao, C. Zhao, M. Li, J. Ren, X. Qu, Ionic liquids as precursors for highly luminescent, surface-different nitrogen-doped carbon dots used for label-free detection of Cu2+/Fe3+ and cell imaging. Anal. Chim. Acta 809, 128–133 (2014). https://doi.org/10.1016/j.aca.2013.10.046
Article
Google Scholar
J.-M. Liu, L.-P. Lin, X.-X. Wang, S.-Q. Lin, W.-L. Cai, L.-H. Zhang, Z.-Y. Zheng, Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst 137(11), 2637–2642 (2012). https://doi.org/10.1039/c2an35130g
Article
Google Scholar
B. Gao, F. Zhao, Y. Miao, H. Min, L. Xu, C. Huang, Boron-and nitrogen-doped photoluminescent polymer carbon nanoparticles as nanosensors for imaging detection of Cu2+ and biothiols in living cells. RSC Adv. 7(75), 47654–47661 (2017). https://doi.org/10.1039/C7RA07683E
Article
Google Scholar
N. Gogoi, M. Barooah, G. Majumdar, D. Chowdhury, Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions. ACS Appl. Mater. Interfaces. 7(5), 3058–3067 (2015). https://doi.org/10.1021/am506558d
Article
Google Scholar
M.-C. Rong, K.-X. Zhang, Y.-R. Wang, X. Chen, The synthesis of B, N-carbon dots by a combustion method and the application of fluorescence detection for Cu2+. Chinese Chem. Lett. 28(5), 1119–1124 (2017). https://doi.org/10.1016/j.cclet.2016.12.009
Article
Google Scholar
Y. Wang, W.-T. Wu, M.-B. Wu, H. Xie, C. Hu, X.-Y. Wu, J.-S. Qiu, Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions. New Carbon Mater. 30(6), 550–559 (2015). https://doi.org/10.1016/S1872-5805(15)60204-9
Article
Google Scholar
X. Niu, G. Liu, L. Li, Z. Fu, H. Xu, F. Cui, Green and economical synthesis of nitrogen-doped carbon dots from vegetables for sensing and imaging applications. RSC Adv. 5(115), 95223–95229 (2015). https://doi.org/10.1039/C5RA17439B
Article
Google Scholar
M. Harada, Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 25(1), 1–24 (1995). https://doi.org/10.3109/10408449509089885
MathSciNet
Article
Google Scholar
M. Harada, Congenital Minamata disease: intrauterine methylmercury poisoning. Teratology 18(2), 285–288 (1978). https://doi.org/10.1002/tera.1420180216
Article
Google Scholar
W. Tang, Y. Wang, P. Wang, J. Di, J. Yang, Y. Wu, Synthesis of strongly fluorescent carbon quantum dots modified with polyamidoamine and a triethoxysilane as quenchable fluorescent probes for mercury(II). Microchim. Acta 183(9), 2571–2578 (2016). https://doi.org/10.1007/s00604-016-1898-0
Article
Google Scholar
Q. Ye, F. Yan, Y. Luo, Y. Wang, X. Zhou, L. Chen, Formation of N, S-codoped fluorescent carbon dots from biomass and their application for the selective detection of mercury and iron ion. Spectrochim. Acta A 173, 854–862 (2017). https://doi.org/10.1016/j.saa.2016.10.039
Article
Google Scholar
Y.H. Yuan, R.S. Li, Q. Wang, Z.L. Wu, J. Wang, H. Liu, C.Z. Huang, Germanium-doped carbon dots as a new type of fluorescent probe for visualizing the dynamic invasions of mercury(II) ions into cancer cells. Nanoscale 7(40), 16841–16847 (2015). https://doi.org/10.1039/C5NR05326A
Article
Google Scholar
M. Zhang, W. Wang, P. Yuan, C. Chi, J. Zhang, N. Zhou, Synthesis of lanthanum doped carbon dots for detection of mercury ion, multi-color imaging of cells and tissue, and bacteriostasis. Chem. Eng. J. 330, 1137–1147 (2017). https://doi.org/10.1016/j.cej.2017.07.166
Article
Google Scholar
L. Li, B. Yu, T. You, Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg(II) ions. Biosens. Bioelectron. 74, 263–269 (2015). https://doi.org/10.1016/j.bios.2015.06.050
Article
Google Scholar
Y. Li, Z.-Y. Zhang, H.-F. Yang, G. Shao, F. Gan, Highly selective fluorescent carbon dots probe for mercury(II) based on thymine–mercury(II)–thymine structure. RSC Adv. 8(8), 3982–3988 (2018). https://doi.org/10.1039/C7RA11487G
Article
Google Scholar
H. Xu, K. Zhang, Q. Liu, Y. Liu, M. Xie, Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots. Microchim. Acta 184(4), 1199–1206 (2017). https://doi.org/10.1007/s00604-017-2099-1
Article
Google Scholar
W. Liu, X. Wang, Y. Wang, J. Li, D. Shen, Q. Kang, L. Chen, Ratiometric fluorescence sensor based on dithiothreitol modified carbon dots-gold nanoclusters for the sensitive detection of mercury ions in water samples. Sensor. Actuat. B-Chem. 262, 810–817 (2018). https://doi.org/10.1016/j.snb.2018.01.222
Article
Google Scholar
J. Zhao, M. Huang, L. Zhang, M. Zou, D. Chen, Y. Huang, S. Zhao, Unique approach to develop carbon dot-based nanohybrid near-infrared ratiometric fluorescent sensor for the detection of mercury ions. Anal. Chem. 89(15), 8044–8049 (2017). https://doi.org/10.1021/acs.analchem.7b01443
Article
Google Scholar
Y. Wang, S.-H. Kim, L. Feng, Highly luminescent N, S–Co-doped carbon dots and their direct use as mercury(II) sensor. Anal. Chim. Acta 890, 134–142 (2015). https://doi.org/10.1016/j.aca.2015.07.051
Article
Google Scholar
R. Tabaraki, N. Sadeghinejad, Microwave assisted synthesis of doped carbon dots and their application as green and simple turn off–on fluorescent sensor for mercury(II) and iodide in environmental samples. Ecotox. Environ. Safe. 153, 101–106 (2018). https://doi.org/10.1016/j.ecoenv.2018.01.059
Article
Google Scholar
A. Gupta, A. Chaudhary, P. Mehta, C. Dwivedi, S. Khan, N.C. Verma, C.K. Nandi, Nitrogen-doped, thiol-functionalized carbon dots for ultrasensitive Hg(II) detection. Chem. Commun. 51(53), 10750–10753 (2015). https://doi.org/10.1039/C5CC03019F
Article
Google Scholar
F. Zhao, J. Qian, F. Quan, C. Wu, Y. Zheng, L. Zhou, Aconitic acid derived carbon dots as recyclable on–off–on fluorescent nanoprobes for sensitive detection of mercury(II) ions, cysteine and cellular imaging. RSC Adv. 7(70), 44178–44185 (2017). https://doi.org/10.1039/C7RA08097B
Article
Google Scholar
F. Yan, D. Shi, T. Zheng, K. Yun, X. Zhou, L. Chen, Carbon dots as nanosensor for sensitive and selective detection of Hg2+ and l-cysteine by means of fluorescence off–on switching. Sensor. Actuat. B-Chem. 224, 926–935 (2016). https://doi.org/10.1016/j.snb.2015.09.057
Article
Google Scholar
J. He, H. Zhang, J. Zou, Y. Liu, J. Zhuang, Y. Xiao, B. Lei, Carbon dots-based fluorescent probe for off-on sensing of Hg(II) and I−. Biosens. Bioelectron. 79, 531–535 (2016). https://doi.org/10.1016/j.bios.2015.12.084
Article
Google Scholar
H. Huang, Y. Weng, L. Zheng, B. Yao, W. Weng, X. Lin, Nitrogen-doped carbon quantum dots as fluorescent probe for off-on detection of mercury ions, l-cysteine and iodide ions. J. Colloid Interf. Sci. 506, 373–378 (2017). https://doi.org/10.1016/j.jcis.2017.07.076
Article
Google Scholar
Y. Ma, Z. Zhang, Y. Xu, M. Ma, B. Chen, L. Wei, L. Xiao, A bright carbon-dot-based fluorescent probe for selective and sensitive detection of mercury ions. Talanta 161, 476–481 (2016). https://doi.org/10.1016/j.talanta.2016.08.082
Article
Google Scholar
S. Lu, D. Wu, G. Li, Z. Lv, Z. Chen, L. Chen, G. Chen, L. Xia, J. You, Y. Wu, Carbon dots-based ratiometric nanosensor for highly sensitive and selective detection of mercury(II) ions and glutathione. RSC Adv. 6(105), 103169–103177 (2016). https://doi.org/10.1039/C6RA21309J
Article
Google Scholar
Y. Liang, H. Zhang, Y. Zhang, F. Chen, Simple hydrothermal preparation of carbon nanodots and their application in colorimetric and fluorimetric detection of mercury ions. Anal. Method. 7(18), 7540–7547 (2015). https://doi.org/10.1039/C5AY01301A
Article
Google Scholar
L. Wang, B. Li, F. Xu, X. Shi, D. Feng, D. Wei, Y. Li, Y. Feng, Y. Wang, D. Jia, High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosens. Bioelectron. 79, 1–8 (2016). https://doi.org/10.1016/j.bios.2015.11.085
Article
Google Scholar
Y. Zhang, P. Cui, F. Zhang, X. Feng, Y. Wang, Y. Yang, X. Liu, Fluorescent probes for off–on highly sensitive detection of Hg2+ and l-cysteine based on nitrogen-doped carbon dots. Talanta 152, 288–300 (2016). https://doi.org/10.1016/j.talanta.2016.02.018
Article
Google Scholar
K.B.A. Ahmed, S. Kumar, A. Veerappan, A facile method to prepare fluorescent carbon dots and their application in selective colorimetric sensing of silver ion through the formation of silver nanoparticles. J. Lumin. 177, 228–234 (2016). https://doi.org/10.1016/j.jlumin.2016.04.053
Article
Google Scholar
X. Gao, Y. Lu, R. Zhang, S. He, J. Ju, M. Liu, L. Li, W. Chen, One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence. J. Mater. Chem. C 3(10), 2302–2309 (2015). https://doi.org/10.1039/C4TC02582B
Article
Google Scholar
R. Vaz, J. Bettini, J.G.F. Júnior, E.D.S. Lima, W.G. Botero, J.C.C. Santos, M.A. Schiavon, High luminescent carbon dots as an eco-friendly fluorescence sensor for Cr(VI) determination in water and soil samples. J. Photoch. Photobio. A 346, 502–511 (2017). https://doi.org/10.1016/j.jphotochem.2017.06.047
Article
Google Scholar
J. Shen, S. Shang, X. Chen, D. Wang, Y. Cai, Highly fluorescent N, S-co-doped carbon dots and their potential applications as antioxidants and sensitive probes for Cr(VI) detection. Sensor. Actuat. B-Chem. 248, 92–100 (2017). https://doi.org/10.1016/j.snb.2017.03.123
Article
Google Scholar
Y. Liu, J. Hu, Y. Li, H.-P. Wei, X.-S. Li, X.-H. Zhang, S.-M. Chen, X.-Q. Chen, Synthesis of polyethyleneimine capped carbon dots for preconcentration and slurry sampling analysis of trace chromium in environmental water samples. Talanta 134, 16–23 (2015). https://doi.org/10.1016/j.talanta.2014.11.001
Article
Google Scholar
J. Chen, Y. Li, K. Lv, W. Zhong, H. Wang, Z. Wu, P. Yi, J. Jiang, Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper(II) ion and sulfide anion in aqueous media and its imaging in live cells. Sensor. Actuat. B-Chem. 224, 298–306 (2016). https://doi.org/10.1016/j.snb.2015.10.046
Article
Google Scholar
N. Amin, A. Afkhami, T. Madrakian, Construction of a novel off-on fluorescence sensor for highly selective sensing of selenite based on europium ions induced crosslinking of nitrogen-doped carbon dots. J. Lumin. 194, 768–777 (2018). https://doi.org/10.1016/j.jlumin.2017.09.048
Article
Google Scholar
U. Baruah, N. Gogoi, G. Majumdar, D. Chowdhury, β-Cyclodextrin and calix [4] arene-25, 26, 27, 28-tetrol capped carbon dots for selective and sensitive detection of fluoride. Carbohyd. Polym. 117, 377–383 (2015). https://doi.org/10.1016/j.carbpol.2014.09.083
Article
Google Scholar
P. Ganguly, S.F. Alam, Role of homocysteine in the development of cardiovascular disease. Nutr. J. 14(1), 6 (2015). https://doi.org/10.1186/1475-2891-14-6
Article
Google Scholar
X. Yang, Y. Guo, R.M. Strongin, Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew. Chem. Int.-Ed. 50(45), 10690–10693 (2011). https://doi.org/10.1002/anie.201103759
Article
Google Scholar
D. Barford, The role of cysteine residues as redox-sensitive regulatory switches. Curr. Opin. Struc. Biol. 14(6), 679–686 (2004). https://doi.org/10.1016/j.sbi.2004.09.012
Article
Google Scholar
J. Choi, R.-M. Liu, R.K. Kundu, F. Sangiorgi, W. Wu, R. Maxson, H.J. Forman, Molecular mechanism of decreased glutathione content in human immunodeficiency virus type 1 Tat-transgenic mice. J. Biol. Chem. 275(5), 3693–3698 (2000). https://doi.org/10.1074/jbc.275.5.3693
Article
Google Scholar
F.J. Staal, S.W. Ela, M. Roederer, M. Anderson, L. Herzenberg, Glutathione deficiency and human immunodeficiency virus infection. The Lancet. 339(8798), 909–912 (1992). https://doi.org/10.1016/0140-6736(92)90939-Z
Article
Google Scholar
Z. Song, F. Quan, Y. Xu, M. Liu, L. Cui, J. Liu, Multifunctional N, S co-doped carbon quantum dots with pH-and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 104, 169–178 (2016). https://doi.org/10.1016/j.Carbon2016.04.003
Article
Google Scholar
Y. Wang, K. Jiang, J. Zhu, L. Zhang, H. Lin, A FRET-based carbon dot–MnO2 nanosheet architecture for glutathione sensing in human whole blood samples. Chem. Commun. 51(64), 12748–12751 (2015). https://doi.org/10.1039/C5CC04905A
Article
Google Scholar
D. Wu, G. Li, X. Chen, N. Qiu, X. Shi, G. Chen, Z. Sun, J. You, Y. Wu, Fluorometric determination and imaging of glutathione based on a thiol-triggered inner filter effect on the fluorescence of carbon dots. Microchim. Acta 184(7), 1923–1931 (2017). https://doi.org/10.1007/s00604-017-2187-2
Article
Google Scholar
J. Deng, Q. Lu, Y. Hou, M. Liu, H. Li, Y. Zhang, S. Yao, Nanosensor composed of nitrogen-doped carbon dots and gold nanoparticles for highly selective detection of cysteine with multiple signals. Anal. Chem. 87(4), 2195–2203 (2015). https://doi.org/10.1021/ac503595y
Article
Google Scholar
P.S. Brookes, Y. Yoon, J.L. Robotham, M. Anders, S.-S. Sheu, Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol.-Cell Physiol. 287(4), C817–C833 (2004). https://doi.org/10.1152/ajpcell.00139.2004
Article
Google Scholar
C.M. O’Reilly, K.E. Fogarty, R.M. Drummond, R.A. Tuft, J.V. Walsh, Quantitative analysis of spontaneous mitochondrial depolarizations. Biophys. J. 85(5), 3350–3357 (2003). https://doi.org/10.1016/S0006-3495(03)74754-7
Article
Google Scholar
Y. Gong, B. Yu, W. Yang, X. Zhang, Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages. Biosens. Bioelectron. 79, 822–828 (2016). https://doi.org/10.1016/j.bios.2016.01.022
Article
Google Scholar
E.F. Simões, J.C.E. da Silva, J.M. Leitão, Peroxynitrite and nitric oxide fluorescence sensing by ethylenediamine doped carbon dots. Sensor. Actuat. B-Chem. 220, 1043–1049 (2015). https://doi.org/10.1016/j.snb.2015.06.072
Article
Google Scholar
J. Wu, X. Wang, Y. Lin, Y. Zheng, J.-M. Lin, Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on microfluidic chip. Talanta 154, 73–79 (2016). https://doi.org/10.1016/j.talanta.2016.03.062
Article
Google Scholar
J.R. Stone, S. Yang, Hydrogen peroxide: a signaling messenger. Antioxid. Redox Sign. 8(3–4), 243–270 (2006). https://doi.org/10.1089/ars.2006.8.243
Article
Google Scholar
Y. Su, X. Zhou, Y. Long, W. Li, Immobilization of horseradish peroxidase on amino-functionalized carbon dots for the sensitive detection of hydrogen peroxide. Microchim. Acta 185(2), 114 (2018). https://doi.org/10.1007/s00604-017-2629-x
Article
Google Scholar
S. Huang, L. Wang, F. Zhu, W. Su, J. Sheng, C. Huang, Q. Xiao, A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA. RSC Adv. 5(55), 44587–44597 (2015). https://doi.org/10.1039/C5RA05519A
Article
Google Scholar
A.H. Loo, Z. Sofer, D. Bouša, P. Ulbrich, A. Bonanni, M. Pumera, Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Appl. Mater. Interfaces. 8(3), 1951–1957 (2016). https://doi.org/10.1021/acsami.5b10160
Article
Google Scholar
R. Guo, B. Chen, F. Li, S. Weng, Z. Zheng, M. Chen, W. Wu, X. Lin, C. Yang, Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA. Sensor. Actuat. B-Chem. 264, 193–201 (2018). https://doi.org/10.1016/j.snb.2018.02.175
Article
Google Scholar
S. Pang, Y. Zhang, C. Wu, S. Feng, Fluorescent carbon dots sensor for highly sensitive detection of guanine. Sensor. Actuat. B-Chem. 222, 857–863 (2016). https://doi.org/10.1016/j.snb.2015.09.037
Article
Google Scholar
L. Li, Y. Lu, Y. Ding, F. Zhang, Y. Wang, Facile aqueous synthesis of functionalized CdTe nanoparticles and their application as fluorescence probes for determination of adenine and guanine. Can. J. Chem. 90(2), 173–179 (2011). https://doi.org/10.1139/v11-144
Article
Google Scholar
S. Huang, L. Wang, C. Huang, J. Xie, W. Su, J. Sheng, Q. Xiao, A carbon dots based fluorescent probe for selective and sensitive detection of hemoglobin. Sensor. Actuat. B-Chem. 221, 1215–1222 (2015). https://doi.org/10.1016/j.snb.2015.07.099
Article
Google Scholar
A. Barati, M. Shamsipur, H. Abdollahi, Hemoglobin detection using carbon dots as a fluorescence probe. Biosens. Bioelectron. 71, 470–475 (2015). https://doi.org/10.1016/j.bios.2015.04.073
Article
Google Scholar
M. Enserink, This time it was real: knowledge of anthrax put to the test. Science 294(5542), 490–491 (2001). https://doi.org/10.1126/science.294.5542.490
Article
Google Scholar
H. Chen, Y. Xie, A.M. Kirillov, L. Liu, M. Yu, W. Liu, Y. Tang, A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker. Chem. Commun. 51(24), 5036–5039 (2015). https://doi.org/10.1039/C5CC00757G
Article
Google Scholar
M. Rong, Y. Liang, D. Zhao, B. Chen, C. Pan, X. Deng, Y. Chen, J. He, A ratiometric fluorescence visual test paper for an anthrax biomarker based on functionalized manganese-doped carbon dots. Sensor. Actuat. B-Chem. 265, 498–505 (2018). https://doi.org/10.1016/j.snb.2018.03.094
Article
Google Scholar
C.P. McCoy, F. Stomeo, S.E. Plush, T. Gunnlaugsson, Soft matter ph sensing: from luminescent lanthanide ph switches in solution to sensing in hydrogels. Chem. Mater. 18(18), 4336–4343 (2006). https://doi.org/10.1021/cm060603v
Article
Google Scholar
K. Qu, J. Wang, J. Ren, X. Qu, Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem.-Eur. J. 19(22), 7243–7249 (2013). https://doi.org/10.1002/chem.201300042
Article
Google Scholar
P. Shen, Y. Xia, Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal. Chem. 86(11), 5323–5329 (2014). https://doi.org/10.1021/ac5001338
Article
Google Scholar
H. Wang, J. Yi, D. Velado, Y. Yu, S. Zhou, Immobilization of carbon dots in molecularly imprinted microgels for optical sensing of glucose at physiological pH. ACS Appl. Mater. Interfaces. 7(29), 15735–15745 (2015). https://doi.org/10.1021/acsami.5b04744
Article
Google Scholar
H. Miao, L. Wang, Y. Zhuo, Z. Zhou, X. Yang, Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice. Biosens. Bioelectron. 86, 83–89 (2016). https://doi.org/10.1016/j.bios.2016.06.043
Article
Google Scholar
H. Motaghi, M.A. Mehrgardi, P. Bouvet, Carbon dots-AS1411 aptamer nanoconjugate for ultrasensitive spectrofluorometric detection of cancer cells. Sci. Rep. 7(1), 10513 (2017). https://doi.org/10.1038/s41598-017-11087-2
Article
Google Scholar
Z.S. Qian, L.J. Chai, Y.Y. Huang, C. Tang, J. Jia Shen, J.R. Chen, H. Feng, A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots. Biosens. Bioelectron. 68, 675–680 (2015). https://doi.org/10.1016/j.bios.2015.01.068
Article
Google Scholar
S. Liu, N. Zhao, Z. Cheng, H. Liu, Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale 7(15), 6836–6842 (2015). https://doi.org/10.1039/C5NR00070J
Article
Google Scholar
M. Amjadi, T. Hallaj, Z. Kouhi, An enzyme-free fluorescent probe based on carbon dots: MnO2 nanosheets for determination of uric acid. J. Photoch. Photobio. A 356, 603–609 (2018). https://doi.org/10.1016/j.jphotochem.2018.02.002
Article
Google Scholar
D. Zhao, C. Chen, J. Sun, X. Yang, Carbon dots-assisted colorimetric and fluorometric dual-mode protocol for acetylcholinesterase activity and inhibitors screening based on the inner filter effect of silver nanoparticles. Analyst 141(11), 3280–3288 (2016). https://doi.org/10.1039/C6AN00514D
Article
Google Scholar
A. Korten, J. Lodder, F. Vreeling, A. Boreas, L. van Raak, F. Kessels, Stroke and idiopathic Parkinson’s disease: does a shortage of dopamine offer protection against stroke? Movement Disord. 16(1), 119–123 (2001). https://doi.org/10.1002/1531-8257(200101)16:1%3c119:AID-MDS1024%3e3.0.CO;2-W
Article
Google Scholar
J.D. Elsworth, R.H. Roth, Dopamine synthesis, uptake, metabolism, and receptors: relevance to gene therapy of Parkinson’s disease. Exp. Neurol. 144(1), 4–9 (1997). https://doi.org/10.1006/exnr.1996.6379
Article
Google Scholar
S. Casalini, F. Leonardi, T. Cramer, F. Biscarini, Organic field-effect transistor for label-free dopamine sensing. Org. Electron. 14(1), 156–163 (2013). https://doi.org/10.1016/j.orgel.2012.10.027
Article
Google Scholar
H. Li, J. Liu, M. Yang, W. Kong, H. Huang, Y. Liu, Highly sensitive, stable, and precise detection of dopamine with carbon dots/tyrosinase hybrid as fluorescent probe. RSC Adv. 4(87), 46437–46443 (2014). https://doi.org/10.1039/C4RA06163B
Article
Google Scholar
H. Li, W. Kong, J. Liu, N. Liu, H. Huang, Y. Liu, Z. Kang, Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. Carbon 91, 66–75 (2015). https://doi.org/10.1016/j.Carbon2015.04.032
Article
Google Scholar
N. Wang, Y. Wang, T. Guo, T. Yang, M. Chen, J. Wang, Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of iron(III) and Escherichia coli. Biosens. Bioelectron. 85, 68–75 (2016). https://doi.org/10.1016/j.bios.2016.04.089
Article
Google Scholar
I.P.-J. Lai, S.G. Harroun, S.-Y. Chen, B. Unnikrishnan, Y.-J. Li, C.-C. Huang, Solid-state synthesis of self-functional carbon quantum dots for detection of bacteria and tumor cells. Sensor. Actuat. B-Chem. 228, 465–470 (2016). https://doi.org/10.1016/j.snb.2016.01.062
Article
Google Scholar
N. Duan, S. Wu, S. Dai, T. Miao, J. Chen, Z. Wang, Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim. Acta 182(5–6), 917–923 (2015). https://doi.org/10.1007/s00604-014-1406-3
Article
Google Scholar
L. Yang, W. Deng, C. Cheng, Y. Tan, Q. Xie, S. Yao, Fluorescent immunoassay for the detection of pathogenic bacteria at the single-cell level using carbon dots-encapsulated breakable organosilica nanocapsule as labels. ACS Appl. Mater. Interfaces. 10(4), 3441–3448 (2018). https://doi.org/10.1021/acsami.7b18714
Article
Google Scholar
J. Zhang, X. Zhao, M. Xian, C. Dong, S. Shuang, Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta 183, 39–47 (2018). https://doi.org/10.1016/j.talanta.2018.02.009
Article
Google Scholar
G. Gao, Y.-W. Jiang, J. Yang, F.-G. Wu, Mitochondria-targetable carbon quantum dots for differentiating cancerous cells from normal cells. Nanoscale 9(46), 18368–18378 (2017). https://doi.org/10.1039/C7NR06764J
Article
Google Scholar
B.B. Chen, Z.X. Liu, H.Y. Zou, C.Z. Huang, Highly selective detection of 2,4,6-trinitrophenol by using newly developed terbium-doped blue carbon dots. Analyst 141(9), 2676–2681 (2016). https://doi.org/10.1039/C5AN02569A
Article
Google Scholar
F. Cheng, X. An, C. Zheng, S. Cao, Green synthesis of fluorescent hydrophobic carbon quantum dots and their use for 2,4,6-trinitrophenol detection. RSC Adv. 5(113), 93360–93363 (2015). https://doi.org/10.1039/C5RA19029K
Article
Google Scholar
B. Ju, Y. Wang, Y.-M. Zhang, T. Zhang, Z. Liu, M. Li, S.X.-A. Zhang, Photo-stable and low-toxic yellow-green carbon dots for highly selective detection of explosive 2,4,6-trinitrophenol based on dual electron transfer mechanism. ACS Appl. Mater. Interfaces. 10(15), 13040–13047 (2018). https://doi.org/10.1021/acsami.8b02330
Article
Google Scholar
D. Shi, F. Yan, T. Zheng, Y. Wang, X. Zhou, L. Chen, P-doped carbon dots act as a nanosensor for trace 2,4,6-trinitrophenol detection and a fluorescent reagent for biological imaging. RSC Adv. 5(119), 98492–98499 (2015). https://doi.org/10.1039/C5RA18800H
Article
Google Scholar
L. Zhang, Y. Han, J. Zhu, Y. Zhai, S. Dong, Simple and sensitive fluorescent and electrochemical trinitrotoluene sensors based on aqueous carbon dots. Anal. Chem. 87(4), 2033–2036 (2015). https://doi.org/10.1021/ac5043686
Article
Google Scholar
S. Zou, C. Hou, H. Fa, L. Zhang, Y. Ma, L. Dong, D. Li, D. Huo, M. Yang, An efficient fluorescent probe for fluazinam using N, S co-doped carbon dots from l-cysteine. Sensor. Actuat. B-Chem. 239, 1033–1041 (2017). https://doi.org/10.1016/j.snb.2016.07.169
Article
Google Scholar
H. Xu, X. Yang, G. Li, C. Zhao, X. Liao, Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J. Agr. Food Chem. 63(30), 6707–6714 (2015). https://doi.org/10.1021/acs.jafc.5b02319
Article
Google Scholar
B. Wang, Y. Chen, Y. Wu, B. Weng, Y. Liu, Z. Lu, C.M. Li, C. Yu, Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens. Bioelectron. 78, 23–30 (2016). https://doi.org/10.1016/j.bios.2015.11.015
Article
Google Scholar
J. Hou, H. Li, L. Wang, P. Zhang, T. Zhou, H. Ding, L. Ding, Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk. Talanta 146, 34–40 (2016). https://doi.org/10.1016/j.talanta.2015.08.024
Article
Google Scholar
L. Feng, L. Tan, H. Li, Z. Xu, G. Shen, Y. Tang, Selective fluorescent sensing of α-amanitin in serum using carbon quantum dots-embedded specificity determinant imprinted polymers. Biosens. Bioelectron. 69, 265–271 (2015). https://doi.org/10.1016/j.bios.2015.03.005
Article
Google Scholar
J. Hou, J. Dong, H. Zhu, X. Teng, S. Ai, M. Mang, A simple and sensitive fluorescent sensor for methyl parathion based on l-tyrosine methyl ester functionalized carbon dots. Biosens. Bioelectron. 68, 20–26 (2015). https://doi.org/10.1016/j.bios.2014.12.037
Article
Google Scholar
J. Hou, Z. Tian, H. Xie, Q. Tian, S. Ai, A fluorescence resonance energy transfer sensor based on quaternized carbon dots and Ellman’s test for ultrasensitive detection of dichlorvos. Sensor. Actuat. B-Chem. 232, 477–483 (2016). https://doi.org/10.1016/j.snb.2016.03.092
Article
Google Scholar
M. Zheng, C. Wang, Y. Wang, W. Wei, S. Ma, X. Sun, J. He, Green synthesis of carbon dots functionalized silver nanoparticles for the colorimetric detection of phoxim. Talanta 185, 309–315 (2018). https://doi.org/10.1016/j.talanta.2018.03.066
Article
Google Scholar
B.B.Z. Mazhari, D. Agsar, Detection of phenols from industrial effluents using streptomyces mediated gold nanoparticles. Indian J. Mater. Sci. 2016, 6937489 (2016). https://doi.org/10.1155/2016/6937489
Article
Google Scholar
G.H.G. Ahmed, R.B. Laí-o, J.A.G. Calzón, M.E.D. García, Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters. Microchim. Acta 182(1), 51–59 (2015). https://doi.org/10.1007/s00604-014-1302-x
Article
Google Scholar
T. Hao, X. Wei, Y. Nie, Y. Xu, Y. Yan, Z. Zhou, An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim. Acta 183(7), 2197–2203 (2016). https://doi.org/10.1007/s00604-016-1851-2
Article
Google Scholar
N. Xiao, S.G. Liu, S. Mo, N. Li, Y.J. Ju, Y. Ling, N.B. Li, H.Q. Luo, Highly selective detection of p-nitrophenol using fluorescence assay based on boron, nitrogen co-doped carbon dots. Talanta 184, 184–192 (2018). https://doi.org/10.1016/j.talanta.2018.02.114
Article
Google Scholar
P. Ni, H. Dai, Z. Li, Y. Sun, J. Hu, S. Jiang, Y. Wang, Z. Li, Carbon dots based fluorescent sensor for sensitive determination of hydroquinone. Talanta 144, 258–262 (2015). https://doi.org/10.1016/j.talanta.2015.06.014
Article
Google Scholar
G. Liu, Z. Chen, X. Jiang, D.-Q. Feng, J. Zhao, D. Fan, W. Wang, In-situ hydrothermal synthesis of molecularly imprinted polymers coated carbon dots for fluorescent detection of bisphenol A. Sensor. Actuat. B-Chem. 228, 302–307 (2016). https://doi.org/10.1016/j.snb.2016.01.010
Article
Google Scholar
M. Xue, M. Zou, J. Zhao, Z. Zhan, S. Zhao, Green preparation of fluorescent carbon dots from lychee seeds and their application for the selective detection of methylene blue and imaging in living cells. J. Mater. Chem. B 3(33), 6783–6789 (2015). https://doi.org/10.1039/C5TB01073J
Article
Google Scholar
D. Zhao, C. Chen, L. Lu, F. Yang, X. Yang, A dual-mode colorimetric and fluorometric light on sensor for thiocyanate based on fluorescent carbon dots and unmodified gold nanoparticles. Analyst 140(24), 8157–8164 (2015). https://doi.org/10.1039/C5AN01926E
Article
Google Scholar
X. Luo, W. Zhang, Y. Han, X. Chen, L. Zhu, W. Tang, J. Wang, T. Yue, Z. Li, N, S co-doped carbon dots based fluorescent on-off-on sensor for determination of ascorbic acid in common fruits. Food Chem. 258, 214–221 (2018). https://doi.org/10.1016/j.foodchem.2018.03.032
Article
Google Scholar
J. Liu, Y. Chen, W. Wang, J. Feng, M. Liang, S. Ma, X. Chen, Switch-on fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots–MnO2 probe. J. Agr. Food Chem. 64(1), 371–380 (2015). https://doi.org/10.1021/acs.jafc.5b05726
Article
Google Scholar
L. Ding, H. Yang, S. Ge, J. Yu, Fluorescent carbon dots nanosensor for label-free determination of vitamin B 12 based on inner filter effect. Spectrochim. Acta A 193, 305–309 (2018). https://doi.org/10.1016/j.saa.2017.12.015
Article
Google Scholar
H. Zeng, L. Li, Y. Ding, Q. Zhuang, Simple and selective determination of 6-thioguanine by using polyethylenimine (PEI) functionalized carbon dots. Talanta 178, 879–885 (2018). https://doi.org/10.1016/j.talanta.2017.09.087
Article
Google Scholar
D. Garg, A. Mehta, A. Mishra, S. Basu, A sensitive turn on fluorescent probe for detection of biothiols using MnO2@ carbon dots nanocomposites. Spectrochim. Acta A 192, 411–419 (2018). https://doi.org/10.1016/j.saa.2017.11.041
Article
Google Scholar
F. Qu, Z. Sun, D. Liu, X. Zhao, J. You, Direct and indirect fluorescent detection of tetracyclines using dually emitting carbon dots. Microchim. Acta 183(9), 2547–2553 (2016). https://doi.org/10.1007/s00604-016-1901-9
Article
Google Scholar
X. Fu, R. Lv, J. Su, H. Li, B. Yang, W. Gu, X. Liu, A dual-emission nano-rod MOF equipped with carbon dots for visual detection of doxycycline and sensitive sensing of MnO4−. RSC Adv. 8(9), 4766–4772 (2018). https://doi.org/10.1039/C7RA12252G
Article
Google Scholar
Y. Wang, T. Ma, S. Ma, Y. Liu, Y. Tian, R. Wang, Y. Jiang, D. Hou, J. Wang, Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim. Acta 184(1), 203–210 (2017). https://doi.org/10.1007/s00604-016-2011-4
Article
Google Scholar
Y. Zou, F. Yan, T. Zheng, D. Shi, F. Sun, N. Yang, L. Chen, Highly luminescent organosilane-functionalized carbon dots as a nanosensor for sensitive and selective detection of quercetin in aqueous solution. Talanta 135, 145–148 (2015). https://doi.org/10.1016/j.talanta.2014.12.029
Article
Google Scholar
Y. Zhang, Z. Gao, W. Zhang, W. Wang, J. Chang, J. Kai, Fluorescent carbon dots as nanoprobe for determination of lidocaine hydrochloride. Sensor. Actuat. B-Chem. 262, 928–937 (2018). https://doi.org/10.1016/j.snb.2018.02.079
Article
Google Scholar
A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, S.W. Joo, Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9(1), 393 (2014). https://doi.org/10.1186/1556-276X-9-393
Article
Google Scholar
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
Article
Google Scholar
S. Sun, L. Zhang, K. Jiang, A. Wu, H. Lin, Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem. Mater. 28(23), 8659–8668 (2016). https://doi.org/10.1021/acs.chemmater.6b03695
Article
Google Scholar
B. Martinac, Single-molecule FRET studies of ion channels. Prog. Biophys. Mol. Biol. 130, 192–197 (2017). https://doi.org/10.1016/j.pbiomolbio.2017.06.014
Article
Google Scholar