Skip to main content
Log in

Nonlocal Aspect of Piezoelectric Composite on Transmission of Mechanical Wave

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This research article aims to conduct a more thorough examination of the effects of size on piezoelectric composites when subjected to Love-type mechanical wave propagation. The objective is to take into account the structural size influences by employing Eringen’s nonlocal theory. By utilizing Maxwell’s relation and electric boundary conditions, the distribution of electric potentials along the piezoelectric composite is derived. Through exact analysis, the dispersion relations for the piezoelectric composite are obtained. Specific outcomes are acquired and validated by comparing them to existing results. Subsequently, a detailed investigation of various influential parameters such as the nonlocal parameter and material parameters on the wave dispersion characteristics of the nanoscaled structure is conducted. These findings demonstrate that the nonlocality parameter within the medium significantly affects wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Zhang, J.: A nonlocal continuum model for the piezopotential of two-dimensional semiconductors. J. Phys. D Appl. Phys. 53, 045303A (2020)

    Article  Google Scholar 

  2. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  Google Scholar 

  3. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw-dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  4. Eringen, A.C.: Plane waves in nonlocal micropolar elasticity. Int. J. Eng. Sci. 54, 4703–4710 (1984)

    Google Scholar 

  5. Liu, C., Yu, J., Zhang, B., Zhang, C.: Size parameter calibration of nonlocal strain gradient theory based on molecular dynamics simulation of guided wave propagation in aluminum plates. Thin-Walled Struct.. 198, 111659 (2024)

    Article  Google Scholar 

  6. Singh, D., Kaur, G., Tomar, S.K.: Waves in nonlocal elastic solid with voids. J. Elast. 128, 85–114 (2017)

    Article  MathSciNet  Google Scholar 

  7. Arash, B., Wang, Q., Liew, K.M.: Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation. Comput. Methods Appl. Mech. Eng. 223–224, 1–9 (2012)

    Article  MathSciNet  Google Scholar 

  8. Edelen, D.G.B., Laws, N.: On the thermodynamics of systems with nonlocality. Arch. Ration. Mech. Anal. 43, 24–35 (1971)

    Article  MathSciNet  Google Scholar 

  9. Edelen, D.G.B., Green, A.E., Laws, N.: Nonlocal continuum mechanics. Arch. Ration. Mech. Anal. 3, 36–44 (1971)

    Article  MathSciNet  Google Scholar 

  10. Khurana, A., Tomar, S.K.: Rayleigh type waves in nonlocal micropolar solid half-space. Ultrasonics 73, 162–168 (2017)

    Article  Google Scholar 

  11. Kaur, G., Singh, D., Tomar, S.K.: Rayleigh type wave in a nonlocal elastic solid with voids. Eur. J. Mech. Solids 71, 134–150 (2018)

    Article  MathSciNet  Google Scholar 

  12. Kaur, G., Singh, D., Tomar, S.K.: Love waves in a nonlocal elastic media with voids. J. Vib. Control 25(8), 1470–1483 (2019)

    Article  MathSciNet  Google Scholar 

  13. Biswas, S.: Rayleigh waves in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic half-space. Acta Mech. 231, 4129–4144 (2020)

    Article  MathSciNet  Google Scholar 

  14. Goyal, R., Kumar, S.: Estimating the effects of imperfect bonding and size-dependency on Love-type wave propagation in functionally graded orthotropic material under the influence of initial stress. Mech. Mater. 155, 103772 (2021)

    Article  Google Scholar 

  15. Wang, B.L., Hu, J.S., Zheng, L.: Nonlocal model of electromechanical fields and effective properties of piezoelectric materials with rigid and electrically conductive inclusions. Mech. Mater. 176, 104415 (2023)

    Article  Google Scholar 

  16. Saroj, P.K., Sahu, S.A., Chaudhary, S., Chattopadhyay, A.: Love-type waves in functionally graded piezoelectric material (FGPM) sandwiched between initially stressed layer and elastic substrate. Waves Random Complex Media 25(4), 608–627 (2015)

    Article  MathSciNet  Google Scholar 

  17. Ezzin, H., Amor, M.B., Ghozlen, M.H.B.: Love waves propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space. Ultrasonics 69, 83–89 (2016)

    Article  Google Scholar 

  18. Ezzin, H., Amor, M.B., Ghozlen, M.H.B.: Propagation behavior of SH waves in layered piezoelectric/piezomagnetic plates. Acta Mech. 228(3), 1071–1081 (2017)

    Article  Google Scholar 

  19. Sahu, S.A., Nirwal, S.: An asymptotic approximation of Love wave frequency in a piezo-composite structure: WKB approach. Waves Random Complex Media 31(1), 1–29 (2019)

    MathSciNet  Google Scholar 

  20. Sharma, V., Kumar, S.: Analysis of size dependency on Love-type wave propagation in a functionally graded piezolectric smart material. Math. Mech. Solids 25(8), 1517–1533 (2020)

    Article  MathSciNet  Google Scholar 

  21. Liu, C., Ke, L.L., Wang, Y.S.: Nonlinear vibration of nonlocal piezoelectric nanoplates. Int. J. Struct. Stab. Dyn. 15(8), 1540013 (2015)

    Article  MathSciNet  Google Scholar 

  22. Sladeka, J., Sladeka, V., Kasalab, J., Panc, E.: Nonlocal and gradient theories of piezoelectric nanoplates. Procedia Eng. 190, 178–185 (2017)

    Article  Google Scholar 

  23. Chen, A.L., Yan, D.J., Wang, Y.S., Zhang, C.: In-plane elastic wave propagation in nanoscale periodic piezoelectric/piezomagnetic laminates. Int. J. Mech. Sci. 153–154, 416–429 (2019)

    Article  Google Scholar 

  24. Amiri, A., Masoumi, A., Talebitooti, R., Safizadeh, M.S.: Wave propagation analysis of magneto-electro-thermo-elastic nanobeams using sinusoidal shear deformation beam model and nonlocal strain gradient theory. J. Theor. Appl. Vib. Acoust.. 5(2), 153–176 (2019)

    Google Scholar 

  25. Sharifi, Z., Khordad, R., Gharaati, A., Forozani, G.: An analytical study of vibration in functionally graded piezoelectric nanoplates: nonlocal strain gradient theory. Appl. Math. Mech. 40(12), 1723–1740 (2019)

    Article  MathSciNet  Google Scholar 

  26. Nan, Y., Tan, D., Zhao, J., Willatzen, M., Wang, Z.L.: Shape- and size dependent piezoelectric properties of monolayer hexagonal boron nitride nanosheets. Nanoscale Adv. 2, 470–477 (2020)

    Article  Google Scholar 

  27. Pang, Y., et al.: SH wave propagation in a piezoelectric/piezomagnetic plate with an imperfect magnetoelectroelastic interface. Waves Random Complex Media 29(3), 580–594 (2018)

    Article  MathSciNet  Google Scholar 

  28. Love, A.E.H.: Some Problems in Geodynamics. Cambridge University Press, London (1911)

    Google Scholar 

  29. Othmani, C., Zhang, H., Lu, C., Takali, F.: Effects of initial stresses on the electromechanical coupling coefficient of SH wave propagation in multilayered PZT-5H structures. Eur. Phys. J. Plus. 134, 551 (2019)

    Article  Google Scholar 

  30. Liu, H., Wang, Z.K., Wang, T.J.: Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure. Int. J. Solids Struct. 38, 37–51 (2001)

    Article  Google Scholar 

  31. Cao, X., Jin, F., Jeon, I., Lu, T.J.: Propagation of Love waves in a functionally graded piezoelectric material layer (FGPM) layered composite system. Int. J. Solids Struct. 46, 4123–4132 (2009)

    Article  Google Scholar 

Download references

Funding

This work did not receive any specific grant from the public, commercial, or non-profit funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanita Sharma.

Ethics declarations

Conflict of interest

On behalf of the other author, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

\(G_{11}^o=G_{11}^c=\alpha _0\overline{c_{44}^L}\sin (k\alpha _0d)\),    \(G_{12}^o=G_{12}^c=\alpha _0\overline{c_{44}^L}\cos (k\alpha _0d)\),    \(G_{13}^o=G_{13}^c={e_{15}^Le^{-kd}},\) \(G_{14}^o=G_{14}^c=-e_{15}^Le^{kd},\)    \(G_{32}^o=G_{32}^c=\alpha _0\overline{c_{44}^L},\)    \(G_{33}^o=G_{33}^c=-G_{34}^o=-G_{34}^c=e_{15}^L,\)    \(G_{35}^o=G_{35}^c=\alpha _1\overline{c_{44}^H},\) \(G_{36}^o=G_{36}^c=e_{15}^H,\)    \(G_{41}^o=G_{41}^c=\frac{e_{15}^L}{\kappa _{11}^L},\)    \(G_{45}^o=G_{45}^c=-\frac{e_{15}^H}{\kappa _{11}^H},\)    \(G_{53}^o=G_{53}^c=-G_{54}^o=-G_{54}^c=\kappa _{11}^L,\)    \(G_{56}^o=G_{56}^c=-\kappa _{11}^H,\)    \(-G_{63}^o=G_{63}^c=e^{-kd},\)    \(G_{64}^o=G_{64}^c=e^{kd},\)    \(G_{61}^c=\frac{e_{15}^L}{\kappa _{11}^L}\cos {k\alpha _0d},\)  \(G_{62}^c=-\frac{e_{15}^L}{\kappa _{11}^L}\sin {k\alpha _0d},\)    \(G_{21}^o=G_{21}^c=-G_{25}^o=-G_{25}^c=G_{43}^o=G_{43}^c=G_{44}^o=G_{44}^c=-G_{46}^o=-G_{46}^c=1\)

\(\chi _1=\left( \frac{e_{15}^L}{\kappa _{11}^L}-\frac{e_{15}^H}{\kappa _{11}^H}\right) \),   \(\chi _2=\kappa _{11}^He_{15}^L-\kappa _{11}^Le_{15}^H,\)   \(\chi _3=\alpha _0\overline{c_{44}^L}\tan (k\alpha _0d)-\alpha _1\overline{c_{44}^H}\),   \(\chi _4=\tanh (kd)\kappa _{11}^L+\kappa _{11}^H\), \(\chi _5=\left( \alpha _0\overline{c_{44}^L}-(\frac{{e_{15}^L}^2}{\kappa _{11}^L})\tan (k\alpha _0d)\tanh (kh)\right) (\kappa _{11}^He_{15}^L-\kappa _{11}^Le_{15}^H)+2\alpha _1\overline{c_{44}^L}e_{15}^L\kappa _{11}^H sec(k\alpha _0d)sech(kd),\) \(\chi _6=\alpha _0\overline{c_{44}^L}\tan (k\alpha _0d)-\alpha _1\overline{c_{44}^H},\)    \(\chi _7=\kappa _{11}^H\tanh (kd)+\kappa _{11}^L,\)   \(\chi _8=\left( \frac{{e_{15}^L}^2}{\kappa _{11}^L}\right) (\alpha _0\overline{c_{44}^L}+\alpha _1\overline{c_{44}^H}\tan (k\alpha _0d)),\)    \(\chi _9=\kappa _{11}^L\tanh (kd)+\kappa _{11}^H\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Kumar, S. Nonlocal Aspect of Piezoelectric Composite on Transmission of Mechanical Wave. Int. J. Appl. Comput. Math 10, 112 (2024). https://doi.org/10.1007/s40819-024-01743-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-024-01743-3

Keywords

Navigation