Skip to main content
Log in

Non-integer Time Fractional-Order Mathematical Model of the COVID-19 Pandemic Impacts on the Societal and Economic Aspects of Nigeria

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The economic and social consequences of the COVID-19 outbreak in Nigeria are examined in this study, utilizing a novel fractional-order model with Laplace Adomian Decomposition (LADM). Using this novel methodology, the study provides insights into the efficacy of control methods in restricting virus spread, the research sheds light on the effectiveness of control measures in containing the virus's spread, addressing a significant gap in the literature concerning the impact of COVID-19 in African nations. Given Nigeria's status as one of the continent's most populous countries, it encounters distinct challenges in pandemic management, making this study particularly pertinent for regional policymakers and public health authorities. Key findings include optimal results at a fractional-order parameter value of one as well as the numerical solution's rapid convergence. The basic reproduction number (\(R_{0} < 0\)) is calculated using the next-generation matrix approach and conducts sensitivity analysis and comparative assessments with traditional methods, emphasizing the importance of selecting appropriate modeling approaches. Overall, the findings have important implications for policymakers managing the pandemic and underscore the need for interdisciplinary collaboration in public health research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Sarker, R., Roknuzzaman, A.S.M., Hossain, M.J., Islam, M.R.: Benefits and probable ill effects of WHO’s declaration of end of COVID-19 pandemic: a way back to pandemic-free normal life. Ann Med Surg 85(6), 3199 (2023)

    Article  Google Scholar 

  2. García-Basteiro, A.L., Chaccour, C., Guinovart, C., Llupià, A., Brew, J., Trilla, A., Plasencia, A.: Monitoring the COVID-19 epidemic in the context of widespread local transmission. Lancet Respir. Med. 8(5), 440–442 (2020)

    Article  Google Scholar 

  3. Aristovnik, A., Keržič, D., Ravšelj, D., Tomaževič, N., Umek, L.: Impacts of the COVID-19 pandemic on life of higher education students: a global perspective. Sustainability 12(20), 8438 (2020)

    Article  Google Scholar 

  4. Peter, O.J., Shaikh, A.S., Ibrahim, M.O., Nisar, K.S., Baleanu, D., Khan, I., Abioye, A.I.: Analysis and dynamics of fractional order mathematical model of Covid-19 in Nigeria using Atangana-Baleanu operation computer. Mater. Contin. (2020). https://doi.org/10.32604/CMC.2020.012314

    Article  Google Scholar 

  5. Olayiwola, M.O., Alaje, A.I., Olarewaju, A.Y., Adedokun, K.A.: A caputo fractional order epidemic model for evaluating the effectiveness of high-risk quarantine and vaccination strategies on the spread of COVID-19. Healthc. Anal. 100179 (2023)

  6. Yunus, A.O., Olayiwola, M.O., Adedokun, K.A., Adedeji, J.A., Alaje, I.A.: Mathematical analysis of fractional-order Caputo’s derivative of coronavirus disease model via Laplace Adomian decomposition method. Beni-Suef Univ. J. Basic Appl. Sci. 11(1), 144 (2022)

    Article  Google Scholar 

  7. Olayiwola, M.O., Kolawole, M.K.: Variational Iteration Method for the simulation of disease transmission coefficient on the Susceptible-Exposed-Infected-Recovered (SEIR) Epidemic model with saturated incidence rate and disease induced death. J. Art Sci. 2(39), 357–364 (2017)

    Google Scholar 

  8. Haq, F., Shah, K., Rahman, G., Shahzad, M.: Numerical solution of fractional order smoking model via laplaceAdomian decomposition method. Alex. Eng. J. 57, 1061–1069 (2018)

    Article  Google Scholar 

  9. Ahmad, A., Farman, M., Ahmad, M.O., Raza, N., Abdullah, M.: Dynamical behavior of SIR epidemic model with non-interger time fractional derivative. Int. J. Adv. Appl. Sci. 5, 123–129 (2017)

    Article  Google Scholar 

  10. Nigeria Center for Disease Control. (2022). An update of COVID-19 outbreak in Nigeria. Retrieved from https://ncdc.gov.ng/diseases/sitreps/?cat=14&name=An%20update%20of%20COVID-19%20outbreak%20in%20Nigeria.

  11. He, J.H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput. 151(1), 287–292 (2004)

    MathSciNet  Google Scholar 

  12. Entezari, M., Abbasbandy, S., Babolian, E.: Numerical solution of fractional partial differential equations with normalized bernstein wavelet method. Appl. Appl Math. Int. J 14(2), 17 (2019)

    MathSciNet  Google Scholar 

  13. Shaikh, A.S., Nisar, K.S.: Transmission dynamics of fractional order Typhoid fever model using Caputo-Fabrizio operator. Chaos, Solitons Fractals 128, 355 (2019)

    Article  MathSciNet  Google Scholar 

  14. Akinpelu, F., Ojo, M.: A mathematical model for the dynamic spread of infection caused by poverty and prostitution in Nigeria. Int. J. Math. Phys. Sci. Res 4, 33–47 (2016)

    Google Scholar 

  15. Olayiwola, M.O., Adedokun, K.A.: A novel tuberculosis model incorporating a Caputo fractional derivative and treatment effect via the homotopy perturbation method. Bull. Natl. Res. Cent. 47, 121 (2023). https://doi.org/10.1186/s42269-023-01091-0

    Article  Google Scholar 

  16. Alaje, A.I., Olayiwola, M.O.: A fractional-order mathematical model for examining the spatiotemporal spread of COVID-19 in the presence of vaccine distribution. Healthcare Anal. 4, 100230 (2023). https://doi.org/10.1016/j.health.2023.100230

    Article  Google Scholar 

  17. Yunus, A.O., Olayiwola, M.O., Omoloye, M.A., Oladapo, A.O.: A fractional order model of lassa disease using the Laplace-adomian decomposition method. Healthc. Anal. 100167 (2023)

  18. Kolawole, M.K., Olayiwola, M.O.: Simulation of the effect of disease transmission coefficient on the Susceptible-Exposed-Infected-Recovered (SEIR) Epidemic model using Variational Iteration Method, Anale.SeriaInformatica. Vol. XVII fasc, Annals. computer Science Series.17th Tome 2nd fasc 2- 2019 (2019)

  19. Okyere, E., Oduro, F., Amponsah, S., Dontwi, I., Frempong, N.: Fractional order SIR model with constant population. Br. J. Math. Comput. Sci. 14(2), 1–12 (2016)

    Article  Google Scholar 

  20. Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., et al.: The socio-economic implications of the coronavirus pandemic (COVID-19): a review. Int. J. Surg. 78, 185–193 (2020)

    Article  Google Scholar 

  21. Tušl, M., Brauchli, R., Kerksieck, P., Bauer, G.F.: Impact of the COVID-19 crisis on work and private life, mental well-being and self-rated health in German and Swiss employees: a cross-sectional online survey. BMC Public Health 21, 1–15 (2021)

    Article  Google Scholar 

  22. Liu, J.J., Bao, Y., Huang, X., Shi, J., Lu, L.: Mental health considerations for children quarantined because of COVID-19. Lancet Child Adolesc Health 4(5), 347–349 (2020)

    Article  Google Scholar 

  23. Brooks, S.K., Webster, R.K., Smith, L.E., Woodland, L., Wessely, S., Greenberg, N., Rubin, G.J.: The psychological impact of quarantine and how to reduce it: rapid review of the evidence. The Lancet 395(10227), 912–920 (2020)

    Article  Google Scholar 

  24. Massetti, G.M., Jackson, B.R., Brooks, J.T., Perrine, C.G., Reott, E., Hall, A.J., et al.: Summary of guidance for minimizing the impact of COVID-19 on individual persons, communities, and health care systems—United States, August 2022. Morb. Mortal. Wkly Rep. 71(33), 1057 (2022)

    Article  Google Scholar 

  25. Olayiwola, M.O., Alaje, A.I., Yunus, A.O.: A caputo fractional order financial mathematical model analyzing the impact of an adaptive minimum interest rate and maximum investment demand. Res. Control Optim. 14, 100349 (2024)

    Google Scholar 

  26. Tengilimoğlu, D., Zekioğlu, A., Tosun, N., Işık, O., Tengilimoğlu, O.: Impacts of COVID-19 pandemic period on depression, anxiety and stress levels of the healthcare employees in Turkey. Leg. Med. 48, 101811 (2021)

    Article  Google Scholar 

  27. Xiao, H., Zhang, Y., Kong, D., Li, S., Yang, N.: The effects of social support on sleep quality of medical staff treating patients with coronavirus disease 2019 (COVID-19) in January and February 2020 in China. Med. Sci. Monitor Int. Med. J. Exp. Clin. Res. 26, e923549–e923551 (2020)

    Google Scholar 

  28. Lange, T., Dimitrov, S., Born, J.: Effects of sleep and circadian rhythm on the human immune system. Ann. N. Y. Acad. Sci. 1193(1), 48–59 (2010)

    Article  Google Scholar 

  29. Yao, K.W., Yu, S., Cheng, S.P., Chen, I.J.: Relationships between personal, depression and social network factors and sleep quality in community-dwelling older adults. J. Nurs. Res. 16(2), 131–139 (2008)

    Article  Google Scholar 

  30. Brugha, T.: Social networks and social support. CurrOpinPsychiat 3, 264–268 (1990)

    Google Scholar 

  31. Prati, G., Pietrantoni, L.: The relation of perceived and received social support to mental health among first responders: a meta-analytic review. J. Community Psychol. 38(3), 403–417 (2010)

    Article  Google Scholar 

  32. Kent de Grey, R.G., Uchino, B.N., Trettevik, R., Cronan, S., Hogan, J.N.: Social support and sleep: a meta-analysis. Health Psychol. 37(8), 787 (2018)

    Article  Google Scholar 

  33. Atede, A.O., Omame, A., Inyama, S.C.: A fractional order vaccination model for COVID-19 incorporating environmental transmission: a case study using Nigerian data. Bull. Biomath. 1(1), 78–110 (2023)

    Google Scholar 

  34. Nwajeri, U.K., Omame, A., Onyenegecha, C.P.: Analysis of a fractional order model for HPV and CT co-infection. Res. Phys. 28, 104643 (2021)

    Google Scholar 

  35. Nwajeri, U.K., Panle, A.B., Omame, A., Obi, M.C., Onyenegecha, C.P.: On the fractional order model for HPV and Syphilis using non–singular kernel. Res. Phys. 37, 105463 (2022)

    Google Scholar 

  36. Omame, A., Zaman, F.D.: Analytic solution of a fractional order mathematical model for tumour with polyclonality and cell mutation. Partial Differ. Equ. Appl. Math. 8, 100545 (2023)

    Article  Google Scholar 

  37. Omame, A., Onyenegecha, I.P., Raezah, A.A., Rihan, F.A.: Co-dynamics of covid-19 and viral hepatitis b using a mathematical model of non-integer order: impact of vaccination. Fractal Fract. 7(7), 544 (2023)

    Article  Google Scholar 

  38. Farman, M., Batool, M., Nisar, K.S., Ghaffari, A.S., Ahmad, A.: Controllability and analysis of sustainable approach for cancer treatment with chemotherapy by using the fractional operator. Res. Phys. 106630 (2023)

  39. Nisar, K.S., Farman, M., Abdel-Aty, M., Cao, J.: A review on epidemic models in sight of fractional calculus. Alex. Eng. J. 75, 81–113 (2023)

    Article  Google Scholar 

  40. Nisar, K.S., Farman, M., Hincal, E., Shehzad, A.: Modelling and analysis of bad impact of smoking in society with Constant Proportional-Caputo Fabrizio operator. Chaos Solitons Fractals 172, 113549 (2023)

    Article  MathSciNet  Google Scholar 

  41. Farman, M., Sarwar, R., Askar, S., Ahmad, H., Sultan, M., Akram, M.M.: Fractional order model to study the impact of planting genetically modified trees on the regulation of atmospheric carbon dioxide with analysis and modeling. Res. Phys. 48, 106409 (2023)

    Google Scholar 

  42. Farman, M., Sarwar, R., Akgul, A.: Modeling and analysis of sustainable approach for dynamics of infections in plant virus with fractal fractional operator. Chaos, Solitons Fractals 170, 113373 (2023)

    Article  MathSciNet  Google Scholar 

  43. Farman, M., Shehzad, A., Akgül, A., Baleanu, D., Sen, M.D.L.: Modelling and analysis of a measles epidemic model with the constant proportional Caputo operator. Symmetry 15(2), 468 (2023)

    Article  Google Scholar 

Download references

Funding

No funding has been received.

Author information

Authors and Affiliations

Authors

Contributions

M.O.O.: Conceptualization, Investigation, Project administration, Supervision, Visualization, Writing - review & editing. A.O.Y.: Formal analysis, Writing - original draft, Methodology, Investigation, Project administration, Supervision, Visualization, Writing - original draft, Writing - review & editing.

Corresponding author

Correspondence to Akeem O. Yunus.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olayiwola, M.O., Yunus, A.O. Non-integer Time Fractional-Order Mathematical Model of the COVID-19 Pandemic Impacts on the Societal and Economic Aspects of Nigeria. Int. J. Appl. Comput. Math 10, 90 (2024). https://doi.org/10.1007/s40819-024-01726-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-024-01726-4

Keywords

Navigation